BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 26191045)

  • 1. The spatial biology of transcription and translation in rapidly growing Escherichia coli.
    Bakshi S; Choi H; Weisshaar JC
    Front Microbiol; 2015; 6():636. PubMed ID: 26191045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent effects of transcription- and translation-halting drugs on the spatial distributions of the Escherichia coli chromosome and ribosomes.
    Bakshi S; Choi H; Mondal J; Weisshaar JC
    Mol Microbiol; 2014 Nov; 94(4):871-87. PubMed ID: 25250841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mapping of the E. coli translational machinery using single-molecule tracking.
    Mohapatra S; Weisshaar JC
    Mol Microbiol; 2018 Oct; 110(2):262-282. PubMed ID: 30107639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.
    Bakshi S; Siryaporn A; Goulian M; Weisshaar JC
    Mol Microbiol; 2012 Jul; 85(1):21-38. PubMed ID: 22624875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
    Mondal J; Bratton BP; Li Y; Yethiraj A; Weisshaar JC
    Biophys J; 2011 Jun; 100(11):2605-13. PubMed ID: 21641305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.
    Sanamrad A; Persson F; Lundius EG; Fange D; GynnÄ AH; Elf J
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11413-8. PubMed ID: 25056965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence.
    Chai Q; Singh B; Peisker K; Metzendorf N; Ge X; Dasgupta S; Sanyal S
    J Biol Chem; 2014 Apr; 289(16):11342-11352. PubMed ID: 24599955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extending the tools of single-molecule fluorescence imaging to problems in microbiology.
    Biteen JS
    Mol Microbiol; 2012 Jul; 85(1):1-4. PubMed ID: 22571513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Distribution and Ribosome-Binding Dynamics of EF-P in Live
    Mohapatra S; Choi H; Ge X; Sanyal S; Weisshaar JC
    mBio; 2017 Jun; 8(3):. PubMed ID: 28588135
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly.
    Sun Q; Margolin W
    J Bacteriol; 2004 Jun; 186(12):3951-9. PubMed ID: 15175309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion.
    Cabrera JE; Cagliero C; Quan S; Squires CL; Jin DJ
    J Bacteriol; 2009 Jul; 191(13):4180-5. PubMed ID: 19395497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of Subcellular Diffusion in Bacteria Based on Spatial Segregation of Ribosomes and Nucleoids.
    Dersch S; Rotter DAO; Graumann PL
    Microb Physiol; 2022; 32(5-6):177-186. PubMed ID: 36070705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Underlying regularity in the shapes of nucleoids of Escherichia coli: implications for nucleoid organization and partition.
    Zimmerman SB
    J Struct Biol; 2003 May; 142(2):256-65. PubMed ID: 12713953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Initiation of transcription and translation in E. coli nucleoids].
    Simon MC; Nisman B
    C R Acad Hebd Seances Acad Sci D; 1977 Sep; 285(4):435-8. PubMed ID: 410521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule dynamics suggest that ribosomes assemble at sites of translation in
    Stoll J; Zegarra V; Bange G; Graumann PL
    Front Microbiol; 2022; 13():999176. PubMed ID: 36406443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation.
    Woldringh CL
    Mol Microbiol; 2002 Jul; 45(1):17-29. PubMed ID: 12100545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial organization of bacterial transcription and translation.
    Castellana M; Hsin-Jung Li S; Wingreen NS
    Proc Natl Acad Sci U S A; 2016 Aug; 113(33):9286-91. PubMed ID: 27486246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Rate of ribosome movement along messenger RNA in E. coli under normal and inhibited translation].
    Arbuzov VA; Ivanova LE
    Biokhimiia; 1976 May; 41(5):768-80. PubMed ID: 799517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells.
    Cagliero C; Zhou YN; Jin DJ
    Nucleic Acids Res; 2014 Dec; 42(22):13696-705. PubMed ID: 25416798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.