These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26191663)

  • 1. Utilizing weak pump depletion to stabilize squeezed vacuum states.
    Denker T; Schütte D; Wimmer MH; Wheatley TA; Huntington EH; Heurs M
    Opt Express; 2015 Jun; 23(13):16517-28. PubMed ID: 26191663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase locking of squeezed vacuum generated by a single-pass optical parametric amplifier.
    Taguchi Y; Oguchi K; Xu Z; Cheon D; Takahashi S; Sano Y; Harashima F; Ozeki Y
    Opt Express; 2022 Feb; 30(5):8002-8014. PubMed ID: 35299551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise.
    Sun X; Wang Y; Tian L; Shi S; Zheng Y; Peng K
    Opt Lett; 2019 Apr; 44(7):1789-1792. PubMed ID: 30933148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13  dB squeezed vacuum states at 1550  nm from 12  mW external pump power at 775  nm.
    Schönbeck A; Thies F; Schnabel R
    Opt Lett; 2018 Jan; 43(1):110-113. PubMed ID: 29328207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm.
    Han Y; Wen X; He J; Yang B; Wang Y; Wang J
    Opt Express; 2016 Feb; 24(3):2350-9. PubMed ID: 26906810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Squeezing in the audio gravitational-wave detection band.
    McKenzie K; Grosse N; Bowen WP; Whitcomb SE; Gray MB; McClelland DE; Lam PK
    Phys Rev Lett; 2004 Oct; 93(16):161105. PubMed ID: 15524974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous experimental generation of vacuum squeezing and bright amplitude squeezing from a frequency doubler.
    Luo Y; Li Y; Xie C; Pan Q; Peng K
    Opt Lett; 2005 Jun; 30(12):1491-3. PubMed ID: 16007784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Noise Correlations of an Optical Parametric Oscillator Based on a Nondegenerate Four Wave Mixing Process in Hot Alkali Atoms.
    Guerrero AM; Nussenzveig P; Martinelli M; Marino AM; Florez HM
    Phys Rev Lett; 2020 Aug; 125(8):083601. PubMed ID: 32909800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator.
    Serikawa T; Yoshikawa JI; Makino K; Frusawa A
    Opt Express; 2016 Dec; 24(25):28383-28391. PubMed ID: 27958548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for locking the signal-field phase difference in a type-II optical parametric oscillator above threshold.
    Pysher M; Miwa Y; Shahrokhshahi R; Xie D; Pfister O
    Opt Express; 2010 Dec; 18(26):27858-71. PubMed ID: 21197059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezing at 946nm with periodically poled KTiOPO(4).
    Aoki T; Takahashi G; Furusawa A
    Opt Express; 2006 Jul; 14(15):6930-5. PubMed ID: 19516876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent control of vacuum squeezing in the gravitational-wave detection band.
    Vahlbruch H; Chelkowski S; Hage B; Franzen A; Danzmann K; Schnabel R
    Phys Rev Lett; 2006 Jul; 97(1):011101. PubMed ID: 16907363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes.
    Kerdoncuff H; Christensen JB; Lassen M
    Opt Express; 2021 Sep; 29(19):29828-29840. PubMed ID: 34614720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of squeezed light with a monolithic optical parametric oscillator: simultaneous achievement of phase matching and cavity resonance by temperature control.
    Yonezawa H; Nagashima K; Furusawa A
    Opt Express; 2010 Sep; 18(19):20143-50. PubMed ID: 20940905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and measurement of a squeezed vacuum up to 100 MHz at 1550 nm with a semi-monolithic optical parametric oscillator designed towards direct coupling with waveguide modules.
    Takanashi N; Inokuchi W; Serikawa T; Furusawa A
    Opt Express; 2019 Jun; 27(13):18900-18909. PubMed ID: 31252825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and perfect fitting of 13.2  dB squeezed vacuum states by considering green-light-induced infrared absorption.
    Shi S; Wang Y; Yang W; Zheng Y; Peng K
    Opt Lett; 2018 Nov; 43(21):5411-5414. PubMed ID: 30383020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator.
    Aytür O; Kumar P
    Opt Lett; 1992 Apr; 17(7):529-31. PubMed ID: 19794548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO4 at 1064 nm.
    Goda K; Mikhailov EE; Miyakawa O; Saraf S; Vass S; Weinstein A; Mavalvala N
    Opt Lett; 2008 Jan; 33(2):92-4. PubMed ID: 18197202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.