These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26191765)

  • 1. Optical heterodyne micro-vibration measurement based on all-fiber acousto-optic frequency shifter.
    Zhang W; Gao W; Huang L; Mao D; Jiang B; Gao F; Yang D; Zhang G; Xu J; Zhao J
    Opt Express; 2015 Jun; 23(13):17576-83. PubMed ID: 26191765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-fiber frequency shifter consisting of a fiber Bragg grating modulated via an acoustic flexural wave for optical heterodyne measurement.
    Gao Z; Chang P; Huang L; Gao F; Mao D; Zhang W; Mei T
    Opt Lett; 2019 Aug; 44(15):3725-3728. PubMed ID: 31368953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-fiber low-frequency shifter based on acousto-optic interaction and its heterodyne vibration response.
    Zhang Z; Xu J; Zhang L; Teng L; Sun J; Zeng X
    Opt Lett; 2022 Jul; 47(14):3419-3422. PubMed ID: 35838694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
    Durán V; Schnébelin C; Guillet de Chatellus H
    Opt Express; 2018 May; 26(11):13800-13809. PubMed ID: 29877427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continual mechanical vibration trajectory tracking based on electro-optical heterodyne interferometry.
    Wang S; Gao Z; Li G; Feng Z; Feng Q
    Opt Express; 2014 Apr; 22(7):7799-810. PubMed ID: 24718156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase-sensitive optical time-domain reflectometric system based on a single-source dual heterodyne detection scheme.
    Yu M; Liu M; Chang T; Lang J; Chen J; Cui HL
    Appl Opt; 2017 May; 56(14):4058-4064. PubMed ID: 29047536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-coherence heterodyne interferometry using an achromatic frequency shifter based on a frequency-domain optical delay line.
    Lu SH; Chiang HP; Lin CY; Chou CC
    Appl Opt; 2014 Feb; 53(6):1047-51. PubMed ID: 24663300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microwave acousto-optic frequency shifter on thin-film lithium niobate.
    Shao L; Sinclair N; Leatham J; Hu Y; Yu M; Turpin T; Crowe D; Lončar M
    Opt Express; 2020 Aug; 28(16):23728-23738. PubMed ID: 32752365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free spectral range measurement using homologous heterodyne optical phase-locked loop based on acousto-optic modulation.
    Zhang C; Feng L; Jiao H; Liu N; Zhang Y; Wang X
    Appl Opt; 2019 Jul; 58(21):5817-5822. PubMed ID: 31503890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of high-stability 100.04  GHz millimeter wave signal over 60  km optical fiber with fast phase-error-correcting capability.
    Sun D; Dong Y; Shi H; Xia Z; Liu Z; Wang S; Xie W; Hu W
    Opt Lett; 2014 May; 39(10):2849-52. PubMed ID: 24978219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on heterodyne detection of a mode-locked pulse laser based on an acousto-optic frequency shift.
    Bai Y; Ren D; Zhao W; Qian L; Chen Z; Liu Y
    Appl Opt; 2010 Jul; 49(20):4018-23. PubMed ID: 20648182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subhertz linewidth laser by locking to a fiber delay line.
    Dong J; Hu Y; Huang J; Ye M; Qu Q; Li T; Liu L
    Appl Opt; 2015 Feb; 54(5):1152-6. PubMed ID: 25968034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment-noise-free optical heterodyne retardation measurement using a double-pass acousto-optic frequency shifter.
    Chou CC; Lu SY; Lin T; Lu SH; Jeng RJ
    Opt Lett; 2016 Nov; 41(22):5138-5141. PubMed ID: 27842077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of acousto-optic optical frequency combs.
    Kanagaraj N; Djevarhidjian L; Duran V; Schnebelin C; de Chatellus HG
    Opt Express; 2019 May; 27(10):14842-14852. PubMed ID: 31163926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-modulated continuous-wave lidar using I/Q modulator for simplified heterodyne detection.
    Gao S; Hui R
    Opt Lett; 2012 Jun; 37(11):2022-4. PubMed ID: 22660108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitive space electric field sensing based on micro fiber interferometer with field force driven gold nanofilm.
    Zhu T; Zhou L; Liu M; Zhang J; Shi L
    Sci Rep; 2015 Oct; 5():15802. PubMed ID: 26507680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced noise reduction techniques for ultra-low phase noise optical-to-microwave division with femtosecond fiber combs.
    Zhang W; Xu Z; Lours M; Boudot R; Kersalé Y; Luiten AN; Le Coq Y; Santarelli G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):900-8. PubMed ID: 21622045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.
    Smith DT; Pratt JR; Howard LP
    Rev Sci Instrum; 2009 Mar; 80(3):035105. PubMed ID: 19334950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range vibration sensor based on correlation analysis of optical frequency-domain reflectometry signals.
    Ding Z; Yao XS; Liu T; Du Y; Liu K; Han Q; Meng Z; Chen H
    Opt Express; 2012 Dec; 20(27):28319-29. PubMed ID: 23263066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR.
    Wang S; Fan X; Liu Q; He Z
    Opt Express; 2015 Dec; 23(26):33301-9. PubMed ID: 26831995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.