These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26191766)

  • 1. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser.
    Zheng C; Hu A; Li R; Bridges D; Chen T
    Opt Express; 2015 Jun; 23(13):17584-98. PubMed ID: 26191766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond Laser Fabrication of Cavity Microball Lens (CMBL) inside a PMMA Substrate for Super-Wide Angle Imaging.
    Zheng C; Hu A; Kihm KD; Ma Q; Li R; Chen T; Duley WW
    Small; 2015 Jul; 11(25):3007-16. PubMed ID: 25740653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Welding of PMMA by a femtosecond fiber laser.
    Volpe A; Di Niso F; Gaudiuso C; De Rosa A; Vázquez RM; Ancona A; Lugarà PM; Osellame R
    Opt Express; 2015 Feb; 23(4):4114-24. PubMed ID: 25836449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Oct; 37(20):4266-8. PubMed ID: 23073432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser.
    Yong J; Chen F; Yang Q; Du G; Bian H; Zhang D; Si J; Yun F; Hou X
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9382-5. PubMed ID: 24070159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses.
    Wang X; Guo H; Yang H; Jiang H; Gong Q
    Appl Opt; 2004 Aug; 43(23):4571-4. PubMed ID: 15376434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching.
    Tong S; Bian H; Yang Q; Chen F; Deng Z; Si J; Hou X
    Opt Express; 2014 Nov; 22(23):29283-91. PubMed ID: 25402166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technique of microball lens formation for efficient optical coupling.
    Pan CT; Chien CH; Hsieh CC
    Appl Opt; 2004 Nov; 43(32):5939-46. PubMed ID: 15587721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism for spherical dome and microvoid formation in polycarbonate using nanojoule femtosecond laser pulses.
    Meunier T; Villafranca AB; Bhardwaj R; Weck A
    Opt Lett; 2012 Aug; 37(15):3168-70. PubMed ID: 22859121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Femtosecond laser written waveguides deep inside silicon.
    Pavlov I; Tokel O; Pavlova S; Kadan V; Makey G; Turnali A; Yavuz Ö; Ilday FÖ
    Opt Lett; 2017 Aug; 42(15):3028-3031. PubMed ID: 28957237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jet printing of convex and concave polymer micro-lenses.
    Blattmann M; Ocker M; Zappe H; Seifert A
    Opt Express; 2015 Sep; 23(19):24525-36. PubMed ID: 26406656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional microfluidics with embedded microball lenses for parallel and high throughput multicolor fluorescence detection.
    Fan YJ; Wu YC; Chen Y; Kung YC; Wu TH; Huang KW; Sheen HJ; Chiou PY
    Biomicrofluidics; 2013; 7(4):44121. PubMed ID: 24404054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond laser-induced microstructures in glasses and applications in micro-optics.
    Qiu J
    Chem Rec; 2004; 4(1):50-8. PubMed ID: 15057868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays.
    Trautmann A; Roth GL; Nujiqi B; Walther T; Hellmann R
    Microsyst Nanoeng; 2019; 5():6. PubMed ID: 31057933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method.
    Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X
    Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array.
    Cao XW; Lu YM; Fan H; Xia H; Zhang L; Zhang YL
    Appl Opt; 2018 Nov; 57(32):9604-9608. PubMed ID: 30461745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.