BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 26192108)

  • 21. Fabrication of freestanding alginate microfibers and microstructures for tissue engineering applications.
    Szymanski JM; Feinberg AW
    Biofabrication; 2014 Jun; 6(2):024104. PubMed ID: 24695323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning.
    Li W; Yao K; Tian L; Xue C; Zhang X; Gao X
    J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation and verification of macroscopic isotropy of hollow alginate-based microfibers.
    Djomehri S; Zeid H; Yavari A; Mobed-Miremadi M; Youssefi K; Liao-Chan S
    Artif Cells Nanomed Biotechnol; 2015; 43(6):390-7. PubMed ID: 24684489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradable hollow spheres based on self-assembly inclusion.
    Meng XW; Qin J; Liu Y; Fan MM; Li BJ; Zhang S; Yu XQ
    Chem Commun (Camb); 2010 Jan; 46(4):643-5. PubMed ID: 20062889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of capillary-like network in a matrix of water-soluble polymer using poly(methyl methacrylate) microfibers.
    Takei T; Kishihara N; Ijima H; Kawakami K
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Feb; 40(1-2):66-9. PubMed ID: 21732729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds.
    Florczyk SJ; Kim DJ; Wood DL; Zhang M
    J Biomed Mater Res A; 2011 Sep; 98(4):614-20. PubMed ID: 21721118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical fibers for water collection inspired by spider silk.
    Chen W; Guo Z
    Nanoscale; 2019 Sep; 11(33):15448-15463. PubMed ID: 31403148
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5170-7. PubMed ID: 19552952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale fabrication of bioinspired fibers for directional water collection.
    Bai H; Sun R; Ju J; Yao X; Zheng Y; Jiang L
    Small; 2011 Dec; 7(24):3429-33. PubMed ID: 22021053
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-release of cells and polymeric nanoparticles from sacrificial microfibers enhances nonviral gene delivery inside 3D hydrogels.
    Madl CM; Keeney M; Li X; Han LH; Yang F
    Tissue Eng Part C Methods; 2014 Oct; 20(10):798-805. PubMed ID: 24483329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printing of Hierarchical Silk Fibroin Structures.
    Sommer MR; Schaffner M; Carnelli D; Studart AR
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34677-34685. PubMed ID: 27933765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Size control of calcium alginate beads containing living cells using micro-nozzle array.
    Sugiura S; Oda T; Izumida Y; Aoyagi Y; Satake M; Ochiai A; Ohkohchi N; Nakajima M
    Biomaterials; 2005 Jun; 26(16):3327-31. PubMed ID: 15603828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of artificial endothelialized tubes with predetermined three-dimensional configuration from flexible cell-enclosing alginate fibers.
    Takei T; Sakai S; Yokonuma T; Ijima H; Kawakami K
    Biotechnol Prog; 2007; 23(1):182-6. PubMed ID: 17269686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of porous gelatin microfibers using an aqueous wet spinning process.
    Yang CY; Chiu CT; Chang YP; Wang YJ
    Artif Cells Blood Substit Immobil Biotechnol; 2009; 37(4):173-6. PubMed ID: 19526441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional inkjet biofabrication based on designed images.
    Arai K; Iwanaga S; Toda H; Genci C; Nishiyama Y; Nakamura M
    Biofabrication; 2011 Sep; 3(3):034113. PubMed ID: 21900730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Necrotic regions are absent in fiber-shaped cell aggregates, approximately 100 μm in diameter.
    Takei T; Kitazono J; Tanaka S; Nishimata H; Yoshida M
    Artif Cells Nanomed Biotechnol; 2016; 44(1):62-5. PubMed ID: 24813225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silk fibroin and sodium alginate blend: miscibility and physical characteristics.
    de Moraes MA; Silva MF; Weska RF; Beppu MM
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():85-91. PubMed ID: 24857469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.
    Hsiao AY; Okitsu T; Onoe H; Kiyosawa M; Teramae H; Iwanaga S; Kazama T; Matsumoto T; Takeuchi S
    PLoS One; 2015; 10(3):e0119010. PubMed ID: 25734774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.