These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
588 related articles for article (PubMed ID: 26192330)
1. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. Li X; Bassi PS; Boix PP; Fang Y; Wong LH ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330 [TBL] [Abstract][Full Text] [Related]
2. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924 [TBL] [Abstract][Full Text] [Related]
3. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. Yang X; Liu R; Du C; Dai P; Zheng Z; Wang D ACS Appl Mater Interfaces; 2014 Aug; 6(15):12005-11. PubMed ID: 25069041 [TBL] [Abstract][Full Text] [Related]
4. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922 [TBL] [Abstract][Full Text] [Related]
5. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting. Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays. Wang J; Feng B; Su J; Guo L ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404 [TBL] [Abstract][Full Text] [Related]
7. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting. Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation. Li C; Wang T; Luo Z; Liu S; Gong J Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643 [TBL] [Abstract][Full Text] [Related]
9. Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films. Cordova IA; Peng Q; Ferrall IL; Rieth AJ; Hoertz PG; Glass JT Nanoscale; 2015 May; 7(18):8584-92. PubMed ID: 25899449 [TBL] [Abstract][Full Text] [Related]
10. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese. Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963 [TBL] [Abstract][Full Text] [Related]
11. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation. Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603 [TBL] [Abstract][Full Text] [Related]
12. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803 [TBL] [Abstract][Full Text] [Related]
13. Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. Riha SC; Klahr BM; Tyo EC; Seifert S; Vajda S; Pellin MJ; Hamann TW; Martinson AB ACS Nano; 2013 Mar; 7(3):2396-405. PubMed ID: 23398051 [TBL] [Abstract][Full Text] [Related]
14. Revealing the Influence of Doping and Surface Treatment on the Surface Carrier Dynamics in Hematite Nanorod Photoanodes. Gurudayal ; Peter LM; Wong LH; Abdi FF ACS Appl Mater Interfaces; 2017 Nov; 9(47):41265-41272. PubMed ID: 29099583 [TBL] [Abstract][Full Text] [Related]
15. Surface Modification of Hematite Photoanodes with CeO Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429 [TBL] [Abstract][Full Text] [Related]
16. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting. Mao L; Huang YC; Fu Y; Dong CL; Shen S Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607 [TBL] [Abstract][Full Text] [Related]
17. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature. Cho ES; Kang MJ; Kang YS Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403 [TBL] [Abstract][Full Text] [Related]
18. Back electron-hole recombination in hematite photoanodes for water splitting. Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340 [TBL] [Abstract][Full Text] [Related]
19. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction. Yan P; Liu G; Ding C; Han H; Shi J; Gan Y; Li C ACS Appl Mater Interfaces; 2015 Feb; 7(6):3791-6. PubMed ID: 25621529 [TBL] [Abstract][Full Text] [Related]
20. In situ XAS study of CoB Xi L; Schwanke C; Zhou D; Drevon D; van de Krol R; Lange KM Dalton Trans; 2017 Nov; 46(45):15719-15726. PubMed ID: 29095446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]