These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 26192600)
1. A new metal binding domain involved in cadmium, cobalt and zinc transport. Smith AT; Barupala D; Stemmler TL; Rosenzweig AC Nat Chem Biol; 2015 Sep; 11(9):678-84. PubMed ID: 26192600 [TBL] [Abstract][Full Text] [Related]
2. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P Smith AT; Ross MO; Hoffman BM; Rosenzweig AC Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366 [TBL] [Abstract][Full Text] [Related]
3. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Scherer J; Nies DH Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147 [TBL] [Abstract][Full Text] [Related]
4. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
5. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
6. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E; González-Guerrero M; Kaufman BM; Argüello JM Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234 [TBL] [Abstract][Full Text] [Related]
7. Multiple metal binding domains enhance the Zn(II) selectivity of the divalent metal ion transporter AztA. Liu T; Reyes-Caballero H; Li C; Scott RA; Giedroc DP Biochemistry; 2007 Oct; 46(39):11057-68. PubMed ID: 17824670 [TBL] [Abstract][Full Text] [Related]
8. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Bramkamp M; Altendorf K Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567 [TBL] [Abstract][Full Text] [Related]
9. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Mandal AK; Argüello JM Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822 [TBL] [Abstract][Full Text] [Related]
11. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Liu J; Stemmler AJ; Fatima J; Mitra B Biochemistry; 2005 Apr; 44(13):5159-67. PubMed ID: 15794653 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. González-Guerrero M; Argüello JM Proc Natl Acad Sci U S A; 2008 Apr; 105(16):5992-7. PubMed ID: 18417453 [TBL] [Abstract][Full Text] [Related]
13. Distinct functions of serial metal-binding domains in the Escherichia coli P1 B -ATPase CopA. Drees SL; Beyer DF; Lenders-Lomscher C; Lübben M Mol Microbiol; 2015 Aug; 97(3):423-38. PubMed ID: 25899340 [TBL] [Abstract][Full Text] [Related]
14. Structure and Function of Cu(I)- and Zn(II)-ATPases. Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333 [TBL] [Abstract][Full Text] [Related]
15. Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Gaballa A; Helmann JD Biometals; 2003 Dec; 16(4):497-505. PubMed ID: 12779235 [TBL] [Abstract][Full Text] [Related]
16. Diversity of the metal-transporting P1B-type ATPases. Smith AT; Smith KP; Rosenzweig AC J Biol Inorg Chem; 2014 Aug; 19(6):947-60. PubMed ID: 24729073 [TBL] [Abstract][Full Text] [Related]
17. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Raimunda D; González-Guerrero M; Leeber BW; Argüello JM Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186 [TBL] [Abstract][Full Text] [Related]
18. Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus. Rice WJ; Kovalishin A; Stokes DL Biochem Biophys Res Commun; 2006 Sep; 348(1):124-31. PubMed ID: 16876128 [TBL] [Abstract][Full Text] [Related]
19. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. Baekgaard L; Mikkelsen MD; Sørensen DM; Hegelund JN; Persson DP; Mills RF; Yang Z; Husted S; Andersen JP; Buch-Pedersen MJ; Schjoerring JK; Williams LE; Palmgren MG J Biol Chem; 2010 Oct; 285(41):31243-52. PubMed ID: 20650903 [TBL] [Abstract][Full Text] [Related]
20. Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Grazioso R; García-Viñuales S; Russo L; D'Abrosca G; Esposito S; Zaccaro L; Iacovino R; Milardi D; Fattorusso R; Malgieri G; Isernia C Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167398 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]