These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26192751)

  • 1. Genome-Wide Gene Expression Analysis Shows AKAP13-Mediated PKD1 Signaling Regulates the Transcriptional Response to Cardiac Hypertrophy.
    Johnson KR; Nicodemus-Johnson J; Spindler MJ; Carnegie GK
    PLoS One; 2015; 10(7):e0132474. PubMed ID: 26192751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy.
    Taglieri DM; Johnson KR; Burmeister BT; Monasky MM; Spindler MJ; DeSantiago J; Banach K; Conklin BR; Carnegie GK
    J Mol Cell Cardiol; 2014 Jan; 66():27-40. PubMed ID: 24161911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.
    Spindler MJ; Burmeister BT; Huang Y; Hsiao EC; Salomonis N; Scott MJ; Srivastava D; Carnegie GK; Conklin BR
    PLoS One; 2013; 8(4):e62705. PubMed ID: 23658642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy.
    Pérez López I; Cariolato L; Maric D; Gillet L; Abriel H; Diviani D
    Mol Cell Biol; 2013 Aug; 33(15):2903-17. PubMed ID: 23716597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rho guanine nucleotide exchange factor AKAP13 (BRX) is essential for cardiac development in mice.
    Mayers CM; Wadell J; McLean K; Venere M; Malik M; Shibata T; Driggers PH; Kino T; Guo XC; Koide H; Gorivodsky M; Grinberg A; Mukhopadhyay M; Abu-Asab M; Westphal H; Segars JH
    J Biol Chem; 2010 Apr; 285(16):12344-54. PubMed ID: 20139090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway.
    Carnegie GK; Soughayer J; Smith FD; Pedroja BS; Zhang F; Diviani D; Bristow MR; Kunkel MT; Newton AC; Langeberg LK; Scott JD
    Mol Cell; 2008 Oct; 32(2):169-79. PubMed ID: 18951085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AKAP13, a RhoA GTPase-specific guanine exchange factor, is a novel regulator of TLR2 signaling.
    Shibolet O; Giallourakis C; Rosenberg I; Mueller T; Xavier RJ; Podolsky DK
    J Biol Chem; 2007 Nov; 282(48):35308-17. PubMed ID: 17878165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The scaffold protein muscle A-kinase anchoring protein β orchestrates cardiac myocyte hypertrophic signaling required for the development of heart failure.
    Kritzer MD; Li J; Passariello CL; Gayanilo M; Thakur H; Dayan J; Dodge-Kafka K; Kapiloff MS
    Circ Heart Fail; 2014 Jul; 7(4):663-72. PubMed ID: 24812305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein Kinase D1 Regulates Cardiac Hypertrophy, Potassium Channel Remodeling, and Arrhythmias in Heart Failure.
    Bossuyt J; Borst JM; Verberckmoes M; Bailey LRJ; Bers DM; Hegyi B
    J Am Heart Assoc; 2022 Oct; 11(19):e027573. PubMed ID: 36172952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of A-kinase anchor protein 13 and Rho-associated coiled-coil containing protein kinase in restituted and regenerated mucosal epithelial cells following mucosal injury and colorectal cancer cells in mouse models.
    Kangawa Y; Yoshida T; Tanaka T; Kataoka A; Koyama N; Ohsumi T; Hayashi SM; Shibutani M
    Exp Toxicol Pathol; 2017 Sep; 69(7):443-450. PubMed ID: 28434818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy.
    Dadson K; Turdi S; Hashemi S; Zhao J; Polidovitch N; Beca S; Backx PH; McDermott JC; Sweeney G
    J Mol Cell Cardiol; 2015 Sep; 86():102-9. PubMed ID: 26196305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A-kinase anchoring proteins: molecular regulators of the cardiac stress response.
    Diviani D; Maric D; Pérez López I; Cavin S; Del Vescovo CD
    Biochim Biophys Acta; 2013 Apr; 1833(4):901-8. PubMed ID: 22889610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis.
    Mohamed BA; Barakat AZ; Zimmermann WH; Bittner RE; Mühlfeld C; Hünlich M; Engel W; Maier LS; Adham IM
    J Mol Cell Cardiol; 2012 Oct; 53(4):459-68. PubMed ID: 22884543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mice deficient in AKAP13 (BRX) develop compulsive-like behavior and increased body weight.
    Maravet Baig K; Su SC; Mumford SL; Giuliani E; Ng SSM; Armstrong C; Keil MF; Vaught KC; Olsen N; Pettiford E; Burd I; Segars JH
    Brain Res Bull; 2018 Jun; 140():72-79. PubMed ID: 29653158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A-kinase-anchoring protein-Lbc anchors IκB kinase β to support interleukin-6-mediated cardiomyocyte hypertrophy.
    del Vescovo CD; Cotecchia S; Diviani D
    Mol Cell Biol; 2013 Jan; 33(1):14-27. PubMed ID: 23090968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo.
    Passier R; Zeng H; Frey N; Naya FJ; Nicol RL; McKinsey TA; Overbeek P; Richardson JA; Grant SR; Olson EN
    J Clin Invest; 2000 May; 105(10):1395-406. PubMed ID: 10811847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid response of cardiac obscurin gene cluster to aortic stenosis: differential activation of Rho-GEF and MLCK and involvement in hypertrophic growth.
    Borisov AB; Raeker MO; Kontrogianni-Konstantopoulos A; Yang K; Kurnit DM; Bloch RJ; Russell MW
    Biochem Biophys Res Commun; 2003 Oct; 310(3):910-8. PubMed ID: 14550291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CHF1/Hey2 promotes physiological hypertrophy in response to pressure overload through selective repression and activation of specific transcriptional pathways.
    Yu M; Liu Y; Xiang F; Li Y; Cullen D; Liao R; Beyer RP; Bammler TK; Chin MT
    OMICS; 2009 Dec; 13(6):501-11. PubMed ID: 20001863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of PPARalpha-dependent alterations during cardiac hypertrophy.
    Smeets PJ; de Vogel-van den Bosch HM; Willemsen PH; Stassen AP; Ayoubi T; van der Vusse GJ; van Bilsen M
    Physiol Genomics; 2008 Dec; 36(1):15-23. PubMed ID: 18812456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cardiac stress signaling by protein kinase d1.
    Harrison BC; Kim MS; van Rooij E; Plato CF; Papst PJ; Vega RB; McAnally JA; Richardson JA; Bassel-Duby R; Olson EN; McKinsey TA
    Mol Cell Biol; 2006 May; 26(10):3875-88. PubMed ID: 16648482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.