BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26192765)

  • 1. Rapid and Multiplexed MicroRNA Diagnostic Assay Using Quantum Dot-Based Förster Resonance Energy Transfer.
    Qiu X; Hildebrandt N
    ACS Nano; 2015 Aug; 9(8):8449-57. PubMed ID: 26192765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplexed CEA-NSE-PSA Immunoassay Using Time-Gated Terbium-to-Quantum Dot FRET.
    Bhuckory S; Wegner KD; Qiu X; Wu YT; Jennings TL; Incamps A; Hildebrandt N
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32806745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA.
    Jin Z; Geißler D; Qiu X; Wegner KD; Hildebrandt N
    Angew Chem Int Ed Engl; 2015 Aug; 54(34):10024-9. PubMed ID: 26226913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terbium to quantum dot FRET bioconjugates for clinical diagnostics: influence of human plasma on optical and assembly properties.
    Morgner F; Stufler S; Geissler D; Medintz IL; Algar WR; Susumu K; Stewart MH; Blanco-Canosa JB; Dawson PE; Hildebrandt N
    Sensors (Basel); 2011; 11(10):9667-84. PubMed ID: 22163719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of luminescence quantum yield, surface coating, and functionalization of quantum dots on the sensitivity of time-resolved FRET bioassays.
    Wegner KD; Lanh PT; Jennings T; Oh E; Jain V; Fairclough SM; Smith JM; Giovanelli E; Lequeux N; Pons T; Hildebrandt N
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2881-92. PubMed ID: 23496235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobodies and nanocrystals: highly sensitive quantum dot-based homogeneous FRET immunoassay for serum-based EGFR detection.
    Wegner KD; Lindén S; Jin Z; Jennings TL; el Khoulati R; van Bergen en Henegouwen PM; Hildebrandt N
    Small; 2014 Feb; 10(4):734-40. PubMed ID: 24115738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.
    Ren X; Xue Q; Wen L; Li X; Wang H
    Anal Chim Acta; 2019 Apr; 1053():114-121. PubMed ID: 30712556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semiconductor quantum dots as FRET acceptors for multiplexed diagnostics and molecular ruler application.
    Hildebrandt N; Geissler D
    Adv Exp Med Biol; 2012; 733():75-86. PubMed ID: 22101714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays.
    Cywiński PJ; Nchimi Nono K; Charbonnière LJ; Hammann T; Löhmannsröben HG
    Phys Chem Chem Phys; 2014 Apr; 16(13):6060-7. PubMed ID: 24556813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.
    Geißler D; Hildebrandt N
    Anal Bioanal Chem; 2016 Jul; 408(17):4475-83. PubMed ID: 26970745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity.
    Hallaj T; Amjadi M; Qiu X; Susumu K; Medintz IL; Hildebrandt N
    Nanoscale; 2020 Jul; 12(25):13719-13730. PubMed ID: 32573632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How Quantum Dots Aggregation Enhances Förster Resonant Energy Transfer.
    Hottechamps J; Noblet T; Brans A; Humbert C; Dreesen L
    Chemphyschem; 2020 May; 21(9):853-862. PubMed ID: 32084295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing.
    Tsai HY; Algar WR
    ACS Nano; 2022 May; 16(5):8150-8160. PubMed ID: 35499916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor.
    Zhang Y; Zhang CY
    Anal Chem; 2012 Jan; 84(1):224-31. PubMed ID: 22103863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When Nanoworlds Collide: Implementing DNA Amplification, Nanoparticles, Molecules, and FRET into a Single MicroRNA Biosensor.
    Xu J; Qiu X; Hildebrandt N
    Nano Lett; 2021 Jun; 21(11):4802-4808. PubMed ID: 34041910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-Measurement Multiplexed Quantification of MicroRNAs from Human Tissue Using Catalytic Hairpin Assembly and Förster Resonance Energy Transfer.
    Xu J; Guo J; Golob-Schwarzl N; Haybaeck J; Qiu X; Hildebrandt N
    ACS Sens; 2020 Jun; 5(6):1768-1776. PubMed ID: 32438801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.