These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 26192896)
1. Corrigendum: Excellent Stability of a Lithium-Ion-Conducting Solid Electrolyte upon Reversible Li(+)/H(+) Exchange in Aqueous Solutions. Ma C; Rangasamy E; Liang C; Sakamoto J; More KL; Chi M Angew Chem Int Ed Engl; 2015 Jan; 54(4):1063. PubMed ID: 26192896 [No Abstract] [Full Text] [Related]
2. Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li(+) /H(+) exchange in aqueous solutions. Ma C; Rangasamy E; Liang C; Sakamoto J; More KL; Chi M Angew Chem Int Ed Engl; 2015 Jan; 54(1):129-33. PubMed ID: 25331968 [TBL] [Abstract][Full Text] [Related]
3. Structural limitations for optimizing garnet-type solid electrolytes: a perspective. Zeier WG Dalton Trans; 2014 Nov; 43(43):16133-8. PubMed ID: 25277079 [TBL] [Abstract][Full Text] [Related]
4. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent. Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922 [TBL] [Abstract][Full Text] [Related]
5. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Yamada Y; Furukawa K; Sodeyama K; Kikuchi K; Yaegashi M; Tateyama Y; Yamada A J Am Chem Soc; 2014 Apr; 136(13):5039-46. PubMed ID: 24654781 [TBL] [Abstract][Full Text] [Related]
6. Lithium-ion conducting electrolyte salts for lithium batteries. Aravindan V; Gnanaraj J; Madhavi S; Liu HK Chemistry; 2011 Dec; 17(51):14326-46. PubMed ID: 22114046 [TBL] [Abstract][Full Text] [Related]
7. Li[B(OCH2CF3)4]: synthesis, characterization and electrochemical application as a conducting salt for LiSB batteries. Rohde M; Eiden P; Leppert V; Schmidt M; Garsuch A; Semrau G; Krossing I Chemphyschem; 2015 Feb; 16(3):666-75. PubMed ID: 25521464 [TBL] [Abstract][Full Text] [Related]
8. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
9. Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Markevich E; Salitra G; Fridman K; Sharabi R; Gershinsky G; Garsuch A; Semrau G; Schmidt MA; Aurbach D Langmuir; 2014 Jul; 30(25):7414-24. PubMed ID: 24885475 [TBL] [Abstract][Full Text] [Related]
10. A Li-O₂/air battery using an inorganic solid-state air cathode. Wang X; Zhu D; Song M; Cai S; Zhang L; Chen Y ACS Appl Mater Interfaces; 2014 Jul; 6(14):11204-10. PubMed ID: 24959838 [TBL] [Abstract][Full Text] [Related]
11. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Tan S; Ji YJ; Zhang ZR; Yang Y Chemphyschem; 2014 Jul; 15(10):1956-69. PubMed ID: 25044525 [TBL] [Abstract][Full Text] [Related]
12. Study of lithium ion exchange by two synthetic zeolites: Kinetics and equilibrium. Navarrete-Casas R; Navarrete-Guijosa A; Valenzuela-Calahorro C; López-González JD; García-Rodríguez A J Colloid Interface Sci; 2007 Feb; 306(2):345-53. PubMed ID: 17141259 [TBL] [Abstract][Full Text] [Related]
13. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
14. The use of 6Li{7Li}-REDOR NMR spectroscopy to compare the ionic conductivities of solid-state lithium ion electrolytes. Spencer TL; Plagos NW; Brouwer DH; Goward GR Phys Chem Chem Phys; 2014 Feb; 16(6):2515-26. PubMed ID: 24363013 [TBL] [Abstract][Full Text] [Related]
15. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Shekibi Y; Rüther T; Huang J; Hollenkamp AF Phys Chem Chem Phys; 2012 Apr; 14(13):4597-604. PubMed ID: 22354216 [TBL] [Abstract][Full Text] [Related]
16. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842 [TBL] [Abstract][Full Text] [Related]
17. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Thangadurai V; Narayanan S; Pinzaru D Chem Soc Rev; 2014 Jul; 43(13):4714-27. PubMed ID: 24681593 [TBL] [Abstract][Full Text] [Related]
18. Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. Lee DJ; Agostini M; Park JW; Sun YK; Hassoun J; Scrosati B ChemSusChem; 2013 Dec; 6(12):2245-8. PubMed ID: 23943264 [TBL] [Abstract][Full Text] [Related]
19. Solution-grown germanium nanowire anodes for lithium-ion batteries. Chockla AM; Klavetter KC; Mullins CB; Korgel BA ACS Appl Mater Interfaces; 2012 Sep; 4(9):4658-64. PubMed ID: 22894797 [TBL] [Abstract][Full Text] [Related]
20. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet. Dhivya L; Murugan R ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]