These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 26193000)

  • 21. Enhanced endosomal escape by photothermal activation for improved small interfering RNA delivery and antitumor effect.
    Yang X; Fan B; Gao W; Li L; Li T; Sun J; Peng X; Li X; Wang Z; Wang B; Zhang R; Xie J
    Int J Nanomedicine; 2018; 13():4333-4344. PubMed ID: 30087564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gold nanorod embedded large-pore mesoporous organosilica nanospheres for gene and photothermal cooperative therapy of triple negative breast cancer.
    Ni Q; Teng Z; Dang M; Tian Y; Zhang Y; Huang P; Su X; Lu N; Yang Z; Tian W; Wang S; Liu W; Tang Y; Lu G; Zhang L
    Nanoscale; 2017 Jan; 9(4):1466-1474. PubMed ID: 28066849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Smart nanoplatform for sequential drug release and enhanced chemo-thermal effect of dual drug loaded gold nanorod vesicles for cancer therapy.
    Zhu F; Tan G; Zhong Y; Jiang Y; Cai L; Yu Z; Liu S; Ren F
    J Nanobiotechnology; 2019 Mar; 17(1):44. PubMed ID: 30917812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer.
    Zhao Z; Li Y; Shukla R; Liu H; Jain A; Barve A; Cheng K
    Theranostics; 2019; 9(15):4508-4524. PubMed ID: 31285776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy.
    Wang Z; Wang L; Prabhakar N; Xing Y; Rosenholm JM; Zhang J; Cai K
    Acta Biomater; 2019 Mar; 86():416-428. PubMed ID: 30611792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal therapy of inflammatory macrophages.
    Qin J; Peng Z; Li B; Ye K; Zhang Y; Yuan F; Yang X; Huang L; Hu J; Lu X
    Nanoscale; 2015 Sep; 7(33):13991-4001. PubMed ID: 26228112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer.
    Xu W; Qian J; Hou G; Wang Y; Wang J; Sun T; Ji L; Suo A; Yao Y
    Acta Biomater; 2019 Jan; 83():400-413. PubMed ID: 30465921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-infrared-II responsive ovalbumin functionalized gold-genipin nanosystem cascading photo-immunotherapy of cancer.
    Huang S; Hou Y; Tang Z; Suhail M; Cui M; Iqbal MZ; Kong X
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38861966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes.
    Huang HC; Barua S; Kay DB; Rege K
    ACS Nano; 2009 Oct; 3(10):2941-52. PubMed ID: 19856978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzyme-responsive multifunctional peptide coating of gold nanorods improves tumor targeting and photothermal therapy efficacy.
    Wu L; Lin B; Yang H; Chen J; Mao Z; Wang W; Gao C
    Acta Biomater; 2019 Mar; 86():363-372. PubMed ID: 30660006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA Origami Frameworks Enabled Self-Protective siRNA Delivery for Dual Enhancement of Chemo-Photothermal Combination Therapy.
    Xu T; Yu S; Sun Y; Wu S; Gao D; Wang M; Wang Z; Tian Y; Min Q; Zhu JJ
    Small; 2021 Nov; 17(46):e2101780. PubMed ID: 34611987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors.
    Ye L; Chen Y; Mao J; Lei X; Yang Q; Cui C
    J Exp Clin Cancer Res; 2021 Sep; 40(1):303. PubMed ID: 34579760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional gold nanorods in low-temperature photothermal interactions for combined tumor starvation and RNA interference therapy.
    Fan R; Chen C; Hu J; Mu M; Chuan D; Chen Z; Guo G; Xu J
    Acta Biomater; 2023 Mar; 159():324-337. PubMed ID: 36706851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of multi-stimuli-responsive gold nanorod-curcumin conjugates for chemo-photothermal synergistic cancer therapy.
    Zhu F; Tan G; Jiang Y; Yu Z; Ren F
    Biomater Sci; 2018 Oct; 6(11):2905-2917. PubMed ID: 30209445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-Level Defect Enhanced Photothermal Performance of Bismuth Sulfide-Gold Heterojunction Nanorods for Photothermal Therapy of Cancer Guided by Computed Tomography Imaging.
    Cheng Y; Chang Y; Feng Y; Jian H; Tang Z; Zhang H
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):246-251. PubMed ID: 29139182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells.
    Zhang C; Yuan W; Wu Y; Wan X; Gong Y
    Life Sci; 2021 Feb; 266():118886. PubMed ID: 33310044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNAi-based therapeutic nanostrategy: IL-8 gene silencing in pancreatic cancer cells using gold nanorods delivery vehicles.
    Panwar N; Yang C; Yin F; Yoon HS; Chuan TS; Yong KT
    Nanotechnology; 2015 Sep; 26(36):365101. PubMed ID: 26291710
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer.
    Deng X; Cao M; Zhang J; Hu K; Yin Z; Zhou Z; Xiao X; Yang Y; Sheng W; Wu Y; Zeng Y
    Biomaterials; 2014 May; 35(14):4333-44. PubMed ID: 24565525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of Absorption-Dominant Small Gold Nanorods and Their Plasmonic Properties.
    Jia H; Fang C; Zhu XM; Ruan Q; Wang YX; Wang J
    Langmuir; 2015 Jul; 31(26):7418-26. PubMed ID: 26079391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.
    Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH
    Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.