These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26193101)

  • 1. Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999-2013.
    Guo J; Li W; Liu X; Kong Q; Zhao C; Guo B
    PLoS One; 2015; 10(7):e0133378. PubMed ID: 26193101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pattern of the variation of the TEC extracted from the GPS, IRI 2016, IRI-Plas 2017 and NeQuick 2 over polar region, Antarctica.
    Tariku YA
    Life Sci Space Res (Amst); 2020 May; 25():18-27. PubMed ID: 32414490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GNSS-Based Non-Negative Absolute Ionosphere Total Electron Content, its Spatial Gradients, Time Derivatives and Differential Code Biases: Bounded-Variable Least-Squares and Taylor Series.
    Yasyukevich Y; Mylnikova A; Vesnin A
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial and Temporal Variations of Polar Ionospheric Total Electron Content over Nearly Thirteen Years.
    Xi H; Jiang H; An J; Wang Z; Xu X; Yan H; Feng C
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical Study of the Seasonal Variations in TEC Depletion and the ROTI during 2013-2019 over Hong Kong.
    Li Q; Zhu Y; Fang K; Fang J
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term prediction of the Arctic ionospheric TEC based on time-varying periodograms.
    Liu J; Chen R; Wang Z; An J; Hyyppä J
    PLoS One; 2014; 9(11):e111497. PubMed ID: 25369066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 6 September 2017 X-Class Solar Flares and Their Impacts on the Ionosphere, GNSS, and HF Radio Wave Propagation.
    Yasyukevich Y; Astafyeva E; Padokhin A; Ivanova V; Syrovatskii S; Podlesnyi A
    Space Weather; 2018 Aug; 16(8):1013-1027. PubMed ID: 31031571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations.
    Li W; Huang L; Zhang S; Chai Y
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31842443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.
    Huang L; Zhang H; Xu P; Geng J; Wang C; Liu J
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5).
    Ulukavak M; Inyurt S
    Environ Monit Assess; 2020 Feb; 192(3):190. PubMed ID: 32078061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Spatial and Temporal Variations of Ionospheric Total Electron Content in Japan, during 2014-2019 and the 2016 Kumamoto Earthquake.
    Hu T; Yao Y; Kong J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEC disturbances caused by CME-triggered geomagnetic storm of September 6-9, 2017.
    Uga CI; Gautam SP; Seba EB
    Heliyon; 2024 May; 10(10):e30725. PubMed ID: 38784557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017.
    Zhu F; Jiang Y
    Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration.
    Savastano G; Komjathy A; Verkhoglyadova O; Mazzoni A; Crespi M; Wei Y; Mannucci AJ
    Sci Rep; 2017 Apr; 7():46607. PubMed ID: 28429754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy Analysis of International Reference Ionosphere 2016 and NeQuick2 in the Antarctic.
    Guo Z; Yao Y; Kong J; Chen G; Zhou C; Zhang Q; Shan L; Liu C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of September 2019 Antarctic Sudden Stratospheric Warming on Mid-Latitude Ionosphere and Thermosphere Over North America and Europe.
    Goncharenko LP; Harvey VL; Greer KR; Zhang SR; Coster AJ; Paxton LJ
    Geophys Res Lett; 2021 Aug; 48(15):e2021GL094517. PubMed ID: 35844977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.
    Northington RM; Saros JE
    PLoS One; 2016; 11(7):e0159642. PubMed ID: 27454863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large tundra methane burst during onset of freezing.
    Mastepanov M; Sigsgaard C; Dlugokencky EJ; Houweling S; Ström L; Tamstorf MP; Christensen TR
    Nature; 2008 Dec; 456(7222):628-30. PubMed ID: 19052625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionospheric correction based on ingestion of global ionospheric maps into the NeQuick 2 model.
    Yu X; She C; Zhen W; Bruno N; Liu D; Yue X; Ou M; Xu J
    ScientificWorldJournal; 2015; 2015():376702. PubMed ID: 25815369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGS ROTI Maps: Current Status and Its Extension towards Equatorial Region and Southern Hemisphere.
    Cherniak I; Zakharenkova I; Krankowski A
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.