These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 26193119)

  • 1. Contacts-based prediction of binding affinity in protein-protein complexes.
    Vangone A; Bonvin AM
    Elife; 2015 Jul; 4():e07454. PubMed ID: 26193119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Assessment of Protein-protein Binding Affinity by Reversely Engineering the Energetics in Protein Complexes.
    Wang B; Su Z; Wu Y
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):1012-1022. PubMed ID: 33838354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing informative sequence descriptors and predicting binding affinities of heterodimeric protein complexes.
    Srinivasulu YS; Wang JR; Hsu KT; Tsai MJ; Charoenkwan P; Huang WL; Huang HL; Ho SY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S14. PubMed ID: 26681483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes.
    Xue LC; Rodrigues JP; Kastritis PL; Bonvin AM; Vangone A
    Bioinformatics; 2016 Dec; 32(23):3676-3678. PubMed ID: 27503228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PRODIGY: A Contact-based Predictor of Binding Affinity in Protein-protein Complexes.
    Vangone A; Bonvin AMJJ
    Bio Protoc; 2017 Feb; 7(3):e2124. PubMed ID: 34458447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of interface and surface areas in protein-protein binding affinity prediction: A machine learning analysis based on linear regression and artificial neural network.
    Yang YX; Wang P; Zhu BT
    Biophys Chem; 2022 Apr; 283():106762. PubMed ID: 35196613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of protein-protein interaction networks based on binding affinity.
    Yugandhar K; Gromiha MM
    Curr Protein Pept Sci; 2016; 17(1):72-81. PubMed ID: 26412787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating water exclusion theory into β contacts to predict binding free energy changes and binding hot spots.
    Liu Q; Hoi SC; Kwoh CK; Wong L; Li J
    BMC Bioinformatics; 2014 Feb; 15():57. PubMed ID: 24568581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use B-factor related features for accurate classification between protein binding interfaces and crystal packing contacts.
    Liu Q; Li Z; Li J
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S3. PubMed ID: 25522196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating computational methods and experimental data for understanding the recognition mechanism and binding affinity of protein-protein complexes.
    Gromiha MM; Yugandhar K
    Prog Biophys Mol Biol; 2017 Sep; 128():33-38. PubMed ID: 28069340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the interplay between experimental methods and the performance of predictors of binding affinity change upon mutations in protein complexes.
    Geng C; Vangone A; Bonvin AMJJ
    Protein Eng Des Sel; 2016 Aug; 29(8):291-299. PubMed ID: 27284087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DBAC: a simple prediction method for protein binding hot spots based on burial levels and deeply buried atomic contacts.
    Li Z; Wong L; Li J
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S5. PubMed ID: 21689480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iSEE: Interface structure, evolution, and energy-based machine learning predictor of binding affinity changes upon mutations.
    Geng C; Vangone A; Folkers GE; Xue LC; Bonvin AMJJ
    Proteins; 2019 Feb; 87(2):110-119. PubMed ID: 30417935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CScore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified CMAC learning architecture.
    Ouyang X; Handoko SD; Kwoh CK
    J Bioinform Comput Biol; 2011 Dec; 9 Suppl 1():1-14. PubMed ID: 22144250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling Protein Complexes and Molecular Assemblies Using Computational Methods.
    Launay R; Teppa E; Esque J; André I
    Methods Mol Biol; 2023; 2553():57-77. PubMed ID: 36227539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking structural features of protein complexes and biological function.
    Sowmya G; Breen EJ; Ranganathan S
    Protein Sci; 2015 Sep; 24(9):1486-94. PubMed ID: 26131659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex Stability is Encoded in Binding Patch Softness: a Monomer-Based Approach to Predict Inter-Subunit Affinity of Protein Dimers.
    Hadi-Alijanvand H
    J Proteome Res; 2020 Jan; 19(1):409-423. PubMed ID: 31795635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.