These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 26193131)

  • 1. Pixel-level fringing-effect model to describe the phase profile and diffraction efficiency of a liquid crystal on silicon device.
    Lu T; Pivnenko M; Robertson B; Chu D
    Appl Opt; 2015 Jul; 54(19):5903-10. PubMed ID: 26193131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the diffraction efficiency of SLM-based holography with respect to the fringing field effect.
    Lingel C; Haist T; Osten W
    Appl Opt; 2013 Oct; 52(28):6877-83. PubMed ID: 24085201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model.
    Efron U; Apter B; Bahat-Treidel E
    J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1996-2008. PubMed ID: 15497428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the fringing-field effect in liquid-crystal beam-steering devices.
    Apter B; Efron U; Bahat-Treidel E
    Appl Opt; 2004 Jan; 43(1):11-9. PubMed ID: 14714638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators.
    Moser S; Ritsch-Marte M; Thalhammer G
    Opt Express; 2019 Sep; 27(18):25046-25063. PubMed ID: 31510384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Holographic three-dimensional display and hologram calculation based on liquid crystal on silicon device [invited].
    Li J; Tu HY; Yeh WC; Gui J; Cheng CJ
    Appl Opt; 2014 Sep; 53(27):G222-31. PubMed ID: 25322134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The minimum Euclidean distance principle applied to improve the modulation diffraction efficiency in digitally controlled spatial light modulators.
    Lizana A; Márquez A; Lobato L; Rodange Y; Moreno I; Iemmi C; Campos J
    Opt Express; 2010 May; 18(10):10581-93. PubMed ID: 20588910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches.
    Yang H; Robertson B; Wilkinson P; Chu D
    Opt Express; 2016 May; 24(11):12240-53. PubMed ID: 27410140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture.
    Nordin GP; Kulick JH; Lindquist RG; Nasiatka PJ; Jones MW; Friends M; Kowel ST
    Appl Opt; 1995 Jul; 34(19):3756-63. PubMed ID: 21052198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system.
    Yan J; Xing Y; Guo Z; Li Q
    Opt Express; 2015 Jun; 23(12):15256-64. PubMed ID: 26193507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal over silicon device characteristics for holographic projection of high-definition television images.
    Georgiou A; Christmas J; Moore J; Jeziorska-Chapman A; Davey A; Collings N; Crossland WA
    Appl Opt; 2008 Sep; 47(26):4793-803. PubMed ID: 18784785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device.
    Hyman RM; Lorenz A; Morris SM; Wilkinson TD
    Appl Opt; 2014 Oct; 53(29):6925-9. PubMed ID: 25322400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon.
    Xu J; Qin S; Liu C; Fu S; Liu D
    Opt Lett; 2018 Jun; 43(12):2993-2996. PubMed ID: 29905742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of Optical Phase Profile in Beam Deflector with Advanced Simulation Method for High Diffraction Efficiency.
    Manko A; Kim Y; Morozov A; Palto S; Won K; Lee HS
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution liquid-crystal phase grating formed by fringing fields from interdigitated electrodes.
    Lindquist RG; Kulick JH; Nordin GP; Jarem JM; Kowel ST; Friends M; Leslie TM
    Opt Lett; 1994 May; 19(9):670-2. PubMed ID: 19844408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase flicker optimisation in digital liquid crystal on silicon devices.
    Yang H; Chu DP
    Opt Express; 2019 Aug; 27(17):24556-24567. PubMed ID: 31510343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low voltage polymer network liquid crystal for infrared spatial light modulators.
    Peng F; Xu D; Chen H; Wu ST
    Opt Express; 2015 Feb; 23(3):2361-8. PubMed ID: 25836103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the spatially anamorphic phenomenon and temporal fluctuations in high-speed, ultra-high pixels-per-inch liquid crystal on silicon phase modulator.
    Yang JP; Wu FY; Wang PS; Chen HP
    Opt Express; 2019 Oct; 27(22):32168-32183. PubMed ID: 31684434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive capability of average Stokes polarimetry for simulation of phase multilevel elements onto LCoS devices.
    Martínez FJ; Márquez A; Gallego S; Ortuño M; Francés J; Pascual I; Beléndez A
    Appl Opt; 2015 Feb; 54(6):1379-86. PubMed ID: 25968203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicasting optical interconnects using liquid crystal over silicon devices.
    Georgiou A; Beeckman J; Neyts K
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):363-72. PubMed ID: 21383818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.