These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 26193159)

  • 1. Analysis and simulation of nonlinearity and effects of spontaneous emission in Schottky-junction-based plasmonic amplifiers.
    Livani AM; Kaatuzian H
    Appl Opt; 2015 Jul; 54(19):6103-10. PubMed ID: 26193159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and simulation of an electrically pumped Schottky-junction-based plasmonic amplifier.
    Livani AM; Kaatuzian H
    Appl Opt; 2015 Mar; 54(9):2164-73. PubMed ID: 25968496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory of noise in high-gain surface plasmon-polariton amplifiers incorporating dipolar gain media.
    De Leon I; Berini P
    Opt Express; 2011 Oct; 19(21):20506-17. PubMed ID: 21997058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-signal gain and saturation intensity in dye laser amplifiers.
    Destro MG; Neri JW
    Appl Opt; 1992 Nov; 31(33):7007-11. PubMed ID: 20802560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers.
    Sobon G; Kaczmarek P; Antonczak A; Sotor J; Abramski KM
    Opt Express; 2011 Sep; 19(20):19104-13. PubMed ID: 21996851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of a versatile pulsed laser source based on a diode seed and ultra-high gain bounce geometry amplifiers.
    Teppitaksak A; Thomas GM; Damzen MJ
    Opt Express; 2015 May; 23(9):12328-36. PubMed ID: 25969318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate.
    Lin GR; Lian CW; Wu CL; Lin YH
    Opt Express; 2010 Apr; 18(9):9213-9. PubMed ID: 20588768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of an optically side-pumped alkali vapor amplifier with consideration of amplified spontaneous emission.
    Yang Z; Wang H; Lu Q; Hua W; Xu X
    Opt Express; 2011 Nov; 19(23):23118-31. PubMed ID: 22109192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction efficiency of saturated-gain high-power dye laser amplifiers: effect of nonlinear signal absorption.
    Dasgupta K; Kundu S; Nair LG
    Appl Opt; 1995 Apr; 34(12):1982-8. PubMed ID: 21037745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 167 W, power scalable ytterbium-doped photonic bandgap fiber amplifier at 1178 nm.
    Olausson CB; Shirakawa A; Chen M; Lyngsø JK; Broeng J; Hansen KP; Bjarklev A; Ueda K
    Opt Express; 2010 Aug; 18(16):16345-52. PubMed ID: 20721021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconfigurable Parametric Amplifications of Spoof Surface Plasmons.
    Gao X; Zhang J; Luo Y; Ma Q; Bai GD; Zhang HC; Cui TJ
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100795. PubMed ID: 34219411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor.
    Majidzadeh V; Schmid A; Leblebici Y
    IEEE Trans Biomed Circuits Syst; 2011 Jun; 5(3):262-71. PubMed ID: 23851477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and fluid dynamic modeling, numerical approaches of flowing-gas diode-pumped alkali vapor amplifiers.
    Shen B; Pan B; Jiao J; Xia C
    Opt Express; 2015 Jul; 23(15):19500-11. PubMed ID: 26367608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High average power picosecond pulse and supercontinuum generation from a thulium-doped, all-fiber amplifier.
    Liu J; Xu J; Liu K; Tan F; Wang P
    Opt Lett; 2013 Oct; 38(20):4150-3. PubMed ID: 24321946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel gain measurement technique for high gain amplifiers.
    Garside BK; Efthymiopoulos T
    Appl Opt; 1979 Sep; 18(17):3053-6. PubMed ID: 20212801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical investigation of a multipass, plane mirror, femtosecond dye laser amplifier.
    Wittmann M; Penzkofer A; Gössl G
    Appl Opt; 1995 Aug; 34(24):5287-96. PubMed ID: 21060347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging.
    Park J; Hu C; Li X; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):825-32. PubMed ID: 22547294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications.
    Keshmarzi EK; Tait RN; Berini P
    Opt Express; 2014 May; 22(10):12452-60. PubMed ID: 24921362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-bending based optical band-pass filter and its application in S-band Thulium-doped fiber amplifier.
    Emami SD; Rashid HA; Zarifi A; Zarei A; Soltanian MR; Yasin SZ; Ahmad H; Harun SW
    Opt Express; 2012 Dec; 20(28):29784-97. PubMed ID: 23388806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injection-seeded optoplasmonic amplifier in the visible.
    Gartia MR; Seo S; Kim J; Chang TW; Bahl G; Lu M; Liu GL; Eden JG
    Sci Rep; 2014 Aug; 4():6168. PubMed ID: 25156810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.