These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2619317)

  • 21. Kinetics of interaction of 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate with bovine brain tubulin.
    Yarbrough LR; Fishback JL
    Biochemistry; 1985 Mar; 24(7):1708-14. PubMed ID: 4005223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site.
    Menéndez M; Rivas G; Díaz JF; Andreu JM
    J Biol Chem; 1998 Jan; 273(1):167-76. PubMed ID: 9417061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stereoselectivity of the guanyl-exchangeable nucleotide-binding site of tubulin probed by guanosine 5'-O-(2-thiotriphosphate) diastereoisomers.
    Roychowdhury S; Gaskin F
    Biochemistry; 1988 Oct; 27(20):7799-805. PubMed ID: 3207711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A photoactive phosphonamide derivative of GTP for the identification of the GTP-binding domain in beta-tubulin.
    Chavan AJ; Kim H; Haley BE; Watt DS
    Bioconjug Chem; 1990; 1(5):337-44. PubMed ID: 2098111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mapping of glucose and glucose-6-phosphate binding sites on bovine brain hexokinase. A 1H- and 31P-NMR investigation.
    Jarori GK; Iyer SB; Kasturi SR; Kenkare UW
    Eur J Biochem; 1990 Feb; 188(1):9-14. PubMed ID: 2318206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that the tightly bound magnesium in tubulin is associated with the N-site GTP.
    Osei AA; Everett GW; Himes RH
    FEBS Lett; 1990 Dec; 276(1-2):85-7. PubMed ID: 2265718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin.
    Hamel E; Lustbader J; Lin CM
    Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP.
    Dye RB; Williams RC
    Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical modification of bovine brain tubulin with the guanine nucleotide affinity analogue 5'-p-fluorosulfonylbenzoylguanosine.
    Prasad AR; Luduena RF
    Biochem Int; 1987 Jan; 14(1):85-93. PubMed ID: 3566779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron-paramagnetic-resonance studies of manganese(II) complexes with elongation factor Tu from Bacillus stearothermophilus. Observation of a GTP hydrolysis intermediate state complex.
    Kalbitzer HR; Goody RS; Wittinghofer A
    Eur J Biochem; 1984 Jun; 141(3):591-7. PubMed ID: 6086334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymerization and calcium binding of the tubulin-colchicine complex in the GDP state.
    Doi H; Kawaguchi M; Timasheff SN
    Biosci Biotechnol Biochem; 2003 Aug; 67(8):1643-52. PubMed ID: 12951495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of a photoaffinity analog of GTP with the proteins of microtubules.
    Geahlen RL; Haley BE
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4375-7. PubMed ID: 270679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Binding to tubulin of an allocolchicine spin probe: interaction with the essential SH groups and other active sites.
    Deinum J; Lincoln P
    Biochim Biophys Acta; 1986 Mar; 870(2):226-33. PubMed ID: 3006777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Affinity labeling of tubulin's exchangeable guanosine 5'-triphosphate binding site.
    Maccioni RB; Seeds NW
    Biochemistry; 1983 Mar; 22(7):1572-9. PubMed ID: 6849868
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-13 nuclear magnetic resonance study of microtubule protein: evidence for a second colchicine site involved in the inhibition of microtubule assembly.
    Ringel I; Sternlicht H
    Biochemistry; 1984 Nov; 23(23):5644-53. PubMed ID: 6150726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of 6-mercapto-GTP with bovine brain tubulin. Equilibrium aspects.
    Fishback JL; Yarbrough LR
    J Biol Chem; 1984 Feb; 259(3):1968-73. PubMed ID: 6693440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The magnesium-GTP interaction in microtubule assembly.
    Grover S; Hamel E
    Eur J Biochem; 1994 May; 222(1):163-72. PubMed ID: 8200341
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of Ant-ATP with tubulin: evidence for ATP competition for the GTP E-site on tubulin.
    Rai SS; Kasturi SR
    Arch Biochem Biophys; 1993 Oct; 306(1):133-8. PubMed ID: 8215393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic and magnetic resonance studies of the role of metal ions in the mechanism of Escherichia coli GDP-mannose mannosyl hydrolase, an unusual nudix enzyme.
    Legler PM; Lee HC; Peisach J; Mildvan AS
    Biochemistry; 2002 Apr; 41(14):4655-68. PubMed ID: 11926828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Equilibrium studies of a fluorescent paclitaxel derivative binding to microtubules.
    Li Y; Edsall R; Jagtap PG; Kingston DG; Bane S
    Biochemistry; 2000 Jan; 39(3):616-23. PubMed ID: 10642187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.