These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26193243)

  • 41. Identification of novel inhibitors of Keap1/Nrf2 by a promising method combining protein-protein interaction-oriented library and machine learning.
    Shimizu Y; Yonezawa T; Sakamoto J; Furuya T; Osawa M; Ikeda K
    Sci Rep; 2021 Apr; 11(1):7420. PubMed ID: 33795749
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of 3D Zernike descriptors to shape-based ligand similarity searching.
    Venkatraman V; Chakravarthy PR; Kihara D
    J Cheminform; 2009 Dec; 1():19. PubMed ID: 20150998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LigMatch: a multiple structure-based ligand matching method for 3D virtual screening.
    Kinnings SL; Jackson RM
    J Chem Inf Model; 2009 Sep; 49(9):2056-66. PubMed ID: 19685924
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DiSCuS: an open platform for (not only) virtual screening results management.
    Wójcikowski M; Zielenkiewicz P; Siedlecki P
    J Chem Inf Model; 2014 Jan; 54(1):347-54. PubMed ID: 24364790
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combinatorial Consensus Scoring for Ligand-Based Virtual Fragment Screening: A Comparative Case Study for Serotonin 5-HT(3)A, Histamine H(1), and Histamine H(4) Receptors.
    Schultes S; Kooistra AJ; Vischer HF; Nijmeijer S; Haaksma EE; Leurs R; de Esch IJ; de Graaf C
    J Chem Inf Model; 2015 May; 55(5):1030-44. PubMed ID: 25815783
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-based virtual screening protocols.
    Good A
    Curr Opin Drug Discov Devel; 2001 May; 4(3):301-7. PubMed ID: 11560062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Merging Ligand-Based and Structure-Based Methods in Drug Discovery: An Overview of Combined Virtual Screening Approaches.
    Vázquez J; López M; Gibert E; Herrero E; Luque FJ
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076254
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atom pair 2D-fingerprints perceive 3D-molecular shape and pharmacophores for very fast virtual screening of ZINC and GDB-17.
    Awale M; Reymond JL
    J Chem Inf Model; 2014 Jul; 54(7):1892-907. PubMed ID: 24988038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into Machine Learning-based Approaches for Virtual Screening in Drug Discovery: Existing Strategies and Streamlining Through FP-CADD.
    Hussain W; Rasool N; Khan YD
    Curr Drug Discov Technol; 2021; 18(4):463-472. PubMed ID: 32767944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational approaches streamlining drug discovery.
    Sadybekov AV; Katritch V
    Nature; 2023 Apr; 616(7958):673-685. PubMed ID: 37100941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Applying Machine Learning to Ultrafast Shape Recognition in Ligand-Based Virtual Screening.
    Bonanno E; Ebejer JP
    Front Pharmacol; 2019; 10():1675. PubMed ID: 32140104
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rapid Identification of Potential Drug Candidates from Multi-Million Compounds' Repositories. Combination of 2D Similarity Search with 3D Ligand/Structure Based Methods and In Vitro Screening.
    Szilágyi K; Flachner B; Hajdú I; Szaszkó M; Dobi K; Lőrincz Z; Cseh S; Dormán G
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Virtual Screening Meets Deep Learning.
    Pérez-Sianes J; Pérez-Sánchez H; Díaz F
    Curr Comput Aided Drug Des; 2019; 15(1):6-28. PubMed ID: 30338743
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Alpha sphere filter method: Application of pseudomolecular descriptors in virtual screening of 2D chemical structures.
    Muta H; Hirayama N
    J Comput Chem; 2010 Aug; 31(11):2225-32. PubMed ID: 20340104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of novel antagonists of human neurotensin receptor 1 on the basis of ligand and protein structure.
    Zhang G; Wang K; Li XD; Zhang DL; Xu F
    Biomed Pharmacother; 2016 Dec; 84():147-157. PubMed ID: 27643557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ligand scaffold hopping combining 3D maximal substructure search and molecular similarity.
    Quintus F; Sperandio O; Grynberg J; Petitjean M; Tuffery P
    BMC Bioinformatics; 2009 Aug; 10():245. PubMed ID: 19671127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visualization and virtual screening of the chemical universe database GDB-17.
    Ruddigkeit L; Blum LC; Reymond JL
    J Chem Inf Model; 2013 Jan; 53(1):56-65. PubMed ID: 23259841
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Discovery of novel PPAR ligands by a virtual screening approach based on pharmacophore modeling, 3D shape, and electrostatic similarity screening.
    Markt P; Petersen RK; Flindt EN; Kristiansen K; Kirchmair J; Spitzer G; Distinto S; Schuster D; Wolber G; Laggner C; Langer T
    J Med Chem; 2008 Oct; 51(20):6303-17. PubMed ID: 18821746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving virtual screening performance against conformational variations of receptors by shape matching with ligand binding pocket.
    Lee HS; Lee CS; Kim JS; Kim DH; Choe H
    J Chem Inf Model; 2009 Nov; 49(11):2419-28. PubMed ID: 19852439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. LiSiCA: A Software for Ligand-Based Virtual Screening and Its Application for the Discovery of Butyrylcholinesterase Inhibitors.
    Lešnik S; Štular T; Brus B; Knez D; Gobec S; Janežič D; Konc J
    J Chem Inf Model; 2015 Aug; 55(8):1521-8. PubMed ID: 26158767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.