These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 26193273)
1. Stimulating the Comfort of Textile Electrodes in Wearable Neuromuscular Electrical Stimulation. Zhou H; Lu Y; Chen W; Wu Z; Zou H; Krundel L; Li G Sensors (Basel); 2015 Jul; 15(7):17241-57. PubMed ID: 26193273 [TBL] [Abstract][Full Text] [Related]
2. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel. Puurtinen MM; Komulainen SM; Kauppinen PK; Malmivuo JA; Hyttinen JA Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6012-5. PubMed ID: 17946734 [TBL] [Abstract][Full Text] [Related]
3. Ink-based textile electrodes for wearable functional electrical stimulation: A proof-of-concept study to evaluate comfort and efficacy. Dell'Eva F; Oliveri V; Sironi R; Perego P; Andreoni G; Ferrante S; Pedrocchi A; Ambrosini E Artif Organs; 2024 Oct; 48(10):1138-1149. PubMed ID: 38825886 [TBL] [Abstract][Full Text] [Related]
4. A novel functional electrical stimulation sleeve based on textile-embedded dry electrodes. Garnier B; Marquez-Chin M; DiNunzio S; Iwasa SN; Saadatnia Z; Naguib HE; Popovic MR Biomed Eng Online; 2024 Jun; 23(1):51. PubMed ID: 38835079 [TBL] [Abstract][Full Text] [Related]
5. Textile Electrodes: Influence of Electrode Construction and Pressure on Stimulation Performance in Neuromuscular Electrical Stimulation (NMES). Euler L; Juthberg R; Flodin J; Guo L; Ackermann PW; Persson NK Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1305-1308. PubMed ID: 34891525 [TBL] [Abstract][Full Text] [Related]
6. Textile Electrodes: Influence of Knitting Construction and Pressure on the Contact Impedance. Euler L; Guo L; Persson NK Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668250 [TBL] [Abstract][Full Text] [Related]
7. Development of an Aerogel-Based Wet Electrode for Functional Electrical Stimulation. Marquez-Chin M; Saadatnia Z; Naguib HE; Popovic MR IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4085-4095. PubMed ID: 37831561 [TBL] [Abstract][Full Text] [Related]
8. Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems. Pani D; Dessi A; Saenz-Cogollo JF; Barabino G; Fraboni B; Bonfiglio A IEEE Trans Biomed Eng; 2016 Mar; 63(3):540-9. PubMed ID: 26259215 [TBL] [Abstract][Full Text] [Related]
10. Nanofiber web textile dry electrodes for long-term biopotential recording. Oh TI; Yoon S; Kim TE; Wi H; Kim KJ; Woo EJ; Sadleir RJ IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):204-11. PubMed ID: 23853303 [TBL] [Abstract][Full Text] [Related]
11. Electrical performance of PEDOT:PSS-based textile electrodes for wearable ECG monitoring: a comparative study. Castrillón R; Pérez JJ; Andrade-Caicedo H Biomed Eng Online; 2018 Apr; 17(1):38. PubMed ID: 29609593 [TBL] [Abstract][Full Text] [Related]
12. Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review. Vidhya CM; Maithani Y; Singh JP Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504078 [TBL] [Abstract][Full Text] [Related]
13. Fabric-Based Wearable Dry Electrodes for Body Surface Biopotential Recording. Yokus MA; Jur JS IEEE Trans Biomed Eng; 2016 Feb; 63(2):423-30. PubMed ID: 26241969 [TBL] [Abstract][Full Text] [Related]
14. Validation of Polymer-Based Screen-Printed Textile Electrodes for Surface EMG Detection. Pani D; Achilli A; Spanu A; Bonfiglio A; Gazzoni M; Botter A IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1370-1377. PubMed ID: 31144638 [TBL] [Abstract][Full Text] [Related]
15. A comparison study of electrodes for neonate electrical impedance tomography. Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443 [TBL] [Abstract][Full Text] [Related]
16. Characterization of textile electrodes and conductors using standardized measurement setups. Beckmann L; Neuhaus C; Medrano G; Jungbecker N; Walter M; Gries T; Leonhardt S Physiol Meas; 2010 Feb; 31(2):233-47. PubMed ID: 20086274 [TBL] [Abstract][Full Text] [Related]
17. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. Kuhn A; Keller T; Lawrence M; Morari M IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):255-62. PubMed ID: 20071267 [TBL] [Abstract][Full Text] [Related]
18. Dry Wearable Textile Electrodes for Portable Electrical Impedance Tomography. Hu CL; Cheng IC; Huang CH; Liao YT; Lin WC; Tsai KJ; Chi CH; Chen CW; Wu CH; Lin IT; Li CJ; Lin CW Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696002 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical modeling and evaluation for textile electrodes to skin. Song J; Zhang Y; Yang Y; Liu H; Zhou T; Zhang K; Li F; Xu Z; Liu Q; Li J Biomed Eng Online; 2020 May; 19(1):30. PubMed ID: 32393332 [TBL] [Abstract][Full Text] [Related]
20. Electrical characterization of conductive textile materials and its evaluation as electrodes for venous occlusion plethysmography. Goy CB; Dominguez JM; Gómez López MA; Madrid RE; Herrera MC J Med Eng Technol; 2013 Aug; 37(6):359-67. PubMed ID: 23875930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]