BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26193361)

  • 1. Proteomic Characterisation of the Salt Gland-Enriched Tissues of the Mangrove Tree Species Avicennia officinalis.
    Tan WK; Lim TK; Loh CS; Kumar P; Lin Q
    PLoS One; 2015; 10(7):e0133386. PubMed ID: 26193361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis.
    Krishnamurthy P; Tan XF; Lim TK; Lim TM; Kumar PP; Loh CS; Lin Q
    Proteomics; 2014 Nov; 14(21-22):2545-57. PubMed ID: 25236605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.
    Tan WK; Ang Y; Lim TK; Lim TM; Kumar P; Loh CS; Lin Q
    Electrophoresis; 2015 Oct; 36(19):2473-81. PubMed ID: 26105009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis.
    Jyothi-Prakash PA; Mohanty B; Wijaya E; Lim TM; Lin Q; Loh CS; Kumar PP
    BMC Plant Biol; 2014 Nov; 14():291. PubMed ID: 25404140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic secretion changes in the salt glands of the mangrove tree species Avicennia officinalis in response to a changing saline environment.
    Tan WK; Lin Q; Lim TM; Kumar P; Loh CS
    Plant Cell Environ; 2013 Aug; 36(8):1410-22. PubMed ID: 23336288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide enhances salt secretion and Na(+) sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H(+)-ATPase and Na(+)/H(+) antiporter under high salinity.
    Chen J; Xiao Q; Wu F; Dong X; He J; Pei Z; Zheng H
    Tree Physiol; 2010 Dec; 30(12):1570-85. PubMed ID: 21030403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data in support of the proteomic analysis of plasma membrane and tonoplast from the leaves of mangrove plant Avicennia officinalis.
    Krishnamurthy P; Tan XF; Lim TK; Lim TM; Kumar PP; Loh CS; Lin Q
    Data Brief; 2015 Dec; 5():646-52. PubMed ID: 26649327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis.
    Krishnamurthy P; Mohanty B; Wijaya E; Lee DY; Lim TM; Lin Q; Xu J; Loh CS; Kumar PP
    Sci Rep; 2017 Aug; 7(1):10031. PubMed ID: 28855698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina.
    Natarajan P; Murugesan AK; Govindan G; Gopalakrishnan A; Kumar R; Duraisamy P; Balaji R; Tanuja ; Shyamli PS; Parida AK; Parani M
    Commun Biol; 2021 Jul; 4(1):851. PubMed ID: 34239036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.
    Guo H; Zhang Y; Lan Z; Pennings SC
    Glob Chang Biol; 2013 Sep; 19(9):2765-74. PubMed ID: 23580161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mangrove expansion and salt marsh decline at mangrove poleward limits.
    Saintilan N; Wilson NC; Rogers K; Rajkaran A; Krauss KW
    Glob Chang Biol; 2014 Jan; 20(1):147-57. PubMed ID: 23907934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and expression analysis of three CBF/DREB1 transcriptional factor genes from mangrove Avicennia marina.
    Peng YL; Wang YS; Cheng H; Sun CC; Wu P; Wang LY; Fei J
    Aquat Toxicol; 2013 Sep; 140-141():68-76. PubMed ID: 23751795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Costa Rica mangroves: the north Pacific].
    Zamora-Trejos P; Cortés J
    Rev Biol Trop; 2009 Sep; 57(3):473-88. PubMed ID: 19928448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple, rapid method to isolate salt glands for three-dimensional visualization, fluorescence imaging and cytological studies.
    Tan WK; Lim TM; Loh CS
    Plant Methods; 2010 Oct; 6():24. PubMed ID: 20955621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina?
    Schmitz N; Robert EM; Verheyden A; Kairo JG; Beeckman H; Koedam N
    Ann Bot; 2008 Jan; 101(1):49-58. PubMed ID: 18006508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.
    Armitage AR; Highfield WE; Brody SD; Louchouarn P
    PLoS One; 2015; 10(5):e0125404. PubMed ID: 25946132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current Understanding of Role of Vesicular Transport in Salt Secretion by Salt Glands in Recretohalophytes.
    Lu C; Yuan F; Guo J; Han G; Wang C; Chen M; Wang B
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33672188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomics of Salt Gland-Secreted Sap Indicates a Pivotal Role for Vesicle Transport and Energy Metabolism in Plant Salt Secretion.
    Lu C; Zhang Y; Mi P; Guo X; Wen Y; Han G; Wang B
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.