These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26193518)

  • 1. Novel technique for thermal lens measurement in commonly used optical components.
    Bogan C; Kwee P; Hild S; Huttner SH; Willke B
    Opt Express; 2015 Jun; 23(12):15380-9. PubMed ID: 26193518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feedback control of thermal lensing in a high optical power cavity.
    Fan Y; Zhao C; Degallaix J; Ju L; Blair DG; Slagmolen BJ; Hosken DJ; Brooks AF; Veitch PJ; Munch J
    Rev Sci Instrum; 2008 Oct; 79(10):104501. PubMed ID: 19044736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
    Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH
    Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser.
    Shang J; Zhu X; Zhu G
    Appl Opt; 2011 Nov; 50(32):6103-20. PubMed ID: 22083383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feedback control of optical beam spatial profiles using thermal lensing.
    Liu Z; Fulda P; Arain MA; Williams L; Mueller G; Tanner DB; Reitze DH
    Appl Opt; 2013 Sep; 52(26):6452-7. PubMed ID: 24085119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical distortion of transmissive optics at high power CO(2) laser irradiation.
    Takahashi H; Kimura M; Sano R
    Appl Opt; 1989 May; 28(9):1727-30. PubMed ID: 20548733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realization of a high power optical trapping setup free from thermal lensing effects.
    Simonelli C; Neri E; Ciamei A; Goti I; Inguscio M; Trenkwalder A; Zaccanti M
    Opt Express; 2019 Sep; 27(19):27215-27228. PubMed ID: 31674587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements.
    Proskurnin MA; Volkov ME
    Appl Spectrosc; 2008 Apr; 62(4):439-49. PubMed ID: 18416904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The lensing effect of trapped particles in a dual-beam optical trap.
    Grosser S; Fritsch AW; Kiessling TR; Stange R; Käs JA
    Opt Express; 2015 Feb; 23(4):5221-35. PubMed ID: 25836555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive beam shaping by controlled thermal lensing in optical elements.
    Arain MA; Quetschke V; Gleason J; Williams LF; Rakhmanov M; Lee J; Cruz RJ; Mueller G; Tanner DB; Reitze DH
    Appl Opt; 2007 Apr; 46(12):2153-65. PubMed ID: 17415383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the current influence on near-field and far-field beam patterns for an oxide-confined vertical-cavity surface-emitting laser.
    Peng CY; Tsao K; Cheng HT; Feng M; Wu CH
    Opt Express; 2020 Oct; 28(21):30748-30759. PubMed ID: 33115069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of a three-mirror cavity to thermal and nonlinear lensing: Gaussian-beam analysis.
    Anctil G; McCarthy N; Piché M
    Appl Opt; 2000 Dec; 39(36):6787-98. PubMed ID: 18354693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balancing of thermal lenses in enhancement cavities with transmissive elements.
    Lilienfein N; Carstens H; Holzberger S; Jocher C; Eidam T; Limpert J; Tünnermann A; Apolonski A; Krausz F; Pupeza I
    Opt Lett; 2015 Mar; 40(5):843-6. PubMed ID: 25723447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral and Lensing Characteristics of Gel-Derived Strontium Tartrate Single Crystals Using Dual-Beam Thermal Lens Technique.
    Rejeena I; Thomas V; Mathew S; Lillibai B; Nampoori VP; Radhakrishnan P
    J Fluoresc; 2016 Sep; 26(5):1549-54. PubMed ID: 27465706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of nonlinear absorption coefficients of organic materials by mode-mismatched Z-scan thermal lensing technique.
    Guerra M; Taouri A; Marcano O A; Cabrera H; Sylla M
    Appl Spectrosc; 2007 Oct; 61(10):1128-33. PubMed ID: 17958965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory.
    Power JF
    Appl Opt; 1990 Jan; 29(1):52-63. PubMed ID: 20556068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering and thermal lensing of 2.12- mum laser radiation in biological tissue.
    Ith M; Frenz M; Weber HP
    Appl Opt; 2001 May; 40(13):2216-23. PubMed ID: 18357230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal lensing analysis of TGG and its effect on beam quality.
    Jalali AA; Rybarsyk J; Rogers E
    Opt Express; 2013 Jun; 21(11):13741-7. PubMed ID: 23736627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.