These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26193563)

  • 61. Time-multiplexed light field display with 120-degree wide viewing angle.
    Liu B; Sang X; Yu X; Gao X; Liu L; Gao C; Wang P; Le Y; Du J
    Opt Express; 2019 Nov; 27(24):35728-35739. PubMed ID: 31878740
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A thin 3D-2D convertible integral imaging system using a pinhole array on a polarizer.
    Choi H; Cho SW; Kim J; Lee B
    Opt Express; 2006 Jun; 14(12):5183-90. PubMed ID: 19516683
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 3D light-field display with an increased viewing angle and optimized viewpoint distribution based on a ladder compound lenticular lens unit.
    Liu L; Sang X; Yu X; Gao X; Wang Y; Pei X; Xie X; Fu B; Dong H; Yan B
    Opt Express; 2021 Oct; 29(21):34035-34050. PubMed ID: 34809202
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Geometrical-lightguide-based head-mounted lightfield displays using polymer-dispersed liquid-crystal films.
    Xu M; Hua H
    Opt Express; 2020 Jul; 28(14):21165-21181. PubMed ID: 32680162
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Projection-type integral imaging system using multiple elemental image layers.
    Kim Y; Park SG; Min SW; Lee B
    Appl Opt; 2011 Mar; 50(7):B18-24. PubMed ID: 21364707
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Table screen 360-degree three-dimensional display using a small array of high-speed projectors.
    Takaki Y; Uchida S
    Opt Express; 2012 Apr; 20(8):8848-61. PubMed ID: 22513595
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Viewing-angle and viewing-resolution enhanced integral imaging based on time-multiplexed lens stitching.
    Yang L; Sang X; Yu X; Yan B; Wang K; Yu C
    Opt Express; 2019 May; 27(11):15679-15692. PubMed ID: 31163761
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.
    Shen X; Javidi B
    Appl Opt; 2018 Mar; 57(7):B184-B189. PubMed ID: 29521988
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Omnidirectional-view three-dimensional display system based on cylindrical selective-diffusing screen.
    Xia X; Zheng Z; Liu X; Li H; Yan C
    Appl Opt; 2010 Sep; 49(26):4915-20. PubMed ID: 20830180
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phase-polarization parallax barriers for an autostereo/stereo/monoscopic display with full-screen resolution at each operation mode.
    Ezhov V
    Appl Opt; 2015 Oct; 54(28):8306-12. PubMed ID: 26479601
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Slim-structured electro-floating display system based on the polarization-controlled optical path.
    Kim SC; Park SJ; Kim ES
    Opt Express; 2016 Apr; 24(8):8718-34. PubMed ID: 27137306
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching.
    Jung S; Park JH; Choi H; Lee B
    Appl Opt; 2003 May; 42(14):2513-20. PubMed ID: 12749563
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal.
    Hui L; Fan P; Yuntao W; Yanduo Z; Xiaolin X
    Appl Opt; 2016 Jan; 55(1):140-7. PubMed ID: 26835633
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multi-user 3D film on a time-multiplexed side-emission backlight system.
    Ting CH; Chang YC; Chen CH; Huang YP; Tsai HW
    Appl Opt; 2016 Oct; 55(28):7922-7928. PubMed ID: 27828027
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dual-depth augmented reality display with reflective polarization-dependent lenses.
    Li Y; Yang Q; Xiong J; Li K; Wu ST
    Opt Express; 2021 Sep; 29(20):31478-31487. PubMed ID: 34615239
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Autostereoscopic 3D display using directional subpixel rendering.
    Lee S; Park J; Heo J; Kang B; Kang D; Hwang H; Lee J; Choi Y; Choi K; Nam D
    Opt Express; 2018 Aug; 26(16):20233. PubMed ID: 30119336
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Design and Implementation of the Glasses-free Three Dimensional Laparoscopy System].
    Gu D; Jiang J; Li J; Yan Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 Sep; 41(5):317-321. PubMed ID: 29862715
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Holographic diffuser by use of a silver halide sensitized gelatin process.
    Kim SI; Choi YS; Ham YN; Park CY; Kim JM
    Appl Opt; 2003 May; 42(14):2482-91. PubMed ID: 12749559
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Extended-viewing-angle waveguide near-eye display with a polarization-dependent steering combiner.
    Yoo C; Bang K; Chae M; Lee B
    Opt Lett; 2020 May; 45(10):2870-2873. PubMed ID: 32412489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.