These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 26193577)

  • 1. Strongly squeezed states at 532 nm based on frequency up-conversion.
    Baune C; Gniesmer J; Schönbeck A; Vollmer CE; Fiurášek J; Schnabel R
    Opt Express; 2015 Jun; 23(12):16035-41. PubMed ID: 26193577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm.
    Vollmer CE; Baune C; Samblowski A; Eberle T; Händchen V; Fiurášek J; Schnabel R
    Phys Rev Lett; 2014 Feb; 112(7):073602. PubMed ID: 24579597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum frequency conversion of vacuum squeezed light to bright tunable blue squeezed light and higher-order spatial modes.
    Kerdoncuff H; Christensen JB; Lassen M
    Opt Express; 2021 Sep; 29(19):29828-29840. PubMed ID: 34614720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-wave squeezed states of light via 'up-down' self-phase modulation.
    Singh AP; Ast S; Mehmet M; Vahlbruch H; Schnabel R
    Opt Express; 2019 Aug; 27(16):22408-22418. PubMed ID: 31510535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstration of a quantum-enhanced fiber Sagnac interferometer.
    Mehmet M; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Lett; 2010 May; 35(10):1665-7. PubMed ID: 20479843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave nonclassical light with gigahertz squeezing bandwidth.
    Ast S; Samblowski A; Mehmet M; Steinlechner S; Eberle T; Schnabel R
    Opt Lett; 2012 Jun; 37(12):2367-9. PubMed ID: 22739910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of cw squeezed light at 1550 nm.
    Mehmet M; Steinlechner S; Eberle T; Vahlbruch H; Thüring A; Danzmann K; Schnabel R
    Opt Lett; 2009 Apr; 34(7):1060-2. PubMed ID: 19340219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum frequency down-conversion of bright amplitude-squeezed states.
    Kong D; Li Z; Wang S; Wang X; Li Y
    Opt Express; 2014 Oct; 22(20):24192-201. PubMed ID: 25321994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity.
    Ast S; Mehmet M; Schnabel R
    Opt Express; 2013 Jun; 21(11):13572-9. PubMed ID: 23736610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum non-Gaussianity of frequency up-converted single photons.
    Baune C; Schönbeck A; Samblowski A; Fiurášek J; Schnabel R
    Opt Express; 2014 Sep; 22(19):22808-16. PubMed ID: 25321750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency.
    Vahlbruch H; Mehmet M; Danzmann K; Schnabel R
    Phys Rev Lett; 2016 Sep; 117(11):110801. PubMed ID: 27661673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB.
    Mehmet M; Ast S; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R
    Opt Express; 2011 Dec; 19(25):25763-72. PubMed ID: 22273968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable control of 10 dB two-mode squeezed vacuum states of light.
    Eberle T; Händchen V; Schnabel R
    Opt Express; 2013 May; 21(9):11546-53. PubMed ID: 23670011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13  dB squeezed vacuum states at 1550  nm from 12  mW external pump power at 775  nm.
    Schönbeck A; Thies F; Schnabel R
    Opt Lett; 2018 Jan; 43(1):110-113. PubMed ID: 29328207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct sampling of negative quasiprobabilities of a squeezed state.
    Kiesel T; Vogel W; Hage B; Schnabel R
    Phys Rev Lett; 2011 Sep; 107(11):113604. PubMed ID: 22026668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation.
    Huang W; Liang X; Zhu B; Yan Y; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Feb; 130(7):073601. PubMed ID: 36867793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photon number squeezed States in semiconductor lasers.
    Yamamoto Y; Machida S; Richardson WH
    Science; 1992 Mar; 255(5049):1219-24. PubMed ID: 17816827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A squeezed light source operated under high vacuum.
    Wade AR; Mansell GL; Chua SS; Ward RL; Slagmolen BJ; Shaddock DA; McClelland DE
    Sci Rep; 2015 Dec; 5():18052. PubMed ID: 26657616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of an Atomic Clock using Squeezed Vacuum.
    Kruse I; Lange K; Peise J; Lücke B; Pezzè L; Arlt J; Ertmer W; Lisdat C; Santos L; Smerzi A; Klempt C
    Phys Rev Lett; 2016 Sep; 117(14):143004. PubMed ID: 27740781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.