BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26193972)

  • 1. Uptake of inorganic phosphorus by temperate seagrass beds of Posidonia and Amphibolis in Southern Australia.
    Nayar S
    Environ Monit Assess; 2015 Aug; 187(8):512. PubMed ID: 26193972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and resource allocation of ammonium and nitrate in temperate seagrasses Posidonia and Amphibolis.
    Nayar S; Collings GJ; Miller DJ; Bryars S; Cheshire AC
    Mar Pollut Bull; 2010 Sep; 60(9):1502-11. PubMed ID: 20739251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of nitrogen and phosphorus metabolism in seagrasses.
    Touchette BW; Burkholder JM
    J Exp Mar Biol Ecol; 2000 Jul; 250(1-2):133-167. PubMed ID: 10969167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Managing nitrogen inputs into seagrass meadows near a coastal city: flow-on from research to environmental improvement plans.
    Nayar S; Collings G; Pfennig P; Royal M
    Mar Pollut Bull; 2012 May; 64(5):932-40. PubMed ID: 22469153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seagrass litter decomposition: an additional nutrient source to shallow coastal waters.
    Prasad MHK; Ganguly D; Paneerselvam A; Ramesh R; Purvaja R
    Environ Monit Assess; 2018 Dec; 191(1):5. PubMed ID: 30523426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using hyperspectral imagery to investigate large-scale seagrass cover and genus distribution in a temperate coast.
    Clarke K; Hennessy A; McGrath A; Daly R; Gaylard S; Turner A; Cameron J; Lewis M; Fernandes MB
    Sci Rep; 2021 Feb; 11(1):4182. PubMed ID: 33603192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service.
    Lavery PS; Mateo MÁ; Serrano O; Rozaimi M
    PLoS One; 2013; 8(9):e73748. PubMed ID: 24040052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seagrass on the brink: Decline of threatened seagrass Posidonia australis continues following protection.
    Evans SM; Griffin KJ; Blick RAJ; Poore AGB; Vergés A
    PLoS One; 2018; 13(4):e0190370. PubMed ID: 29624579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landsat historical records reveal large-scale dynamics and enduring recovery of seagrasses in an impacted seascape.
    Fernandes MB; Hennessy A; Law WB; Daly R; Gaylard S; Lewis M; Clarke K
    Sci Total Environ; 2022 Mar; 813():152646. PubMed ID: 34968586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon stocks and accumulation rates in Red Sea seagrass meadows.
    Serrano O; Almahasheer H; Duarte CM; Irigoien X
    Sci Rep; 2018 Oct; 8(1):15037. PubMed ID: 30302026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epiphyte loads on seagrasses and microphytobenthos abundance are not reliable indicators of nutrient availability in oligotrophic coastal ecosystems.
    Fourqurean JW; Muth MF; Boyer JN
    Mar Pollut Bull; 2010 Jul; 60(7):971-83. PubMed ID: 20381091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradients in the number of species at reef-seagrass ecotones explained by gradients in abundance.
    Tuya F; Vanderklift MA; Wernberg T; Thomsen MS
    PLoS One; 2011; 6(5):e20190. PubMed ID: 21629654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors regulating primary producers' assemblages in Posidonia oceanica (L.) Delile ecosystems over the past 1800 years.
    Leiva-Dueñas C; Leavitt PR; Buchaca T; Cortizas AM; López-Merino L; Serrano O; Lavery PS; Schouten S; Mateo MA
    Sci Total Environ; 2020 May; 718():137163. PubMed ID: 32088473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Belowground stressors and long-term seagrass declines in a historically degraded seagrass ecosystem after improved water quality.
    Fraser MW; Kendrick GA
    Sci Rep; 2017 Oct; 7(1):14469. PubMed ID: 29089513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species.
    Borum J; Pedersen O; Kotula L; Fraser MW; Statton J; Colmer TD; Kendrick GA
    Plant Cell Environ; 2016 Jun; 39(6):1240-50. PubMed ID: 26476101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves.
    Tarquinio F; Bourgoure J; Koenders A; Laverock B; Säwström C; Hyndes GA
    ISME J; 2018 Nov; 12(11):2796-2800. PubMed ID: 29977008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomonitoring of coastal pollution in the Gulf of Gabes (SE, Tunisia): use of Posidonia oceanica seagrass as a bioindicator and its mat as an archive of coastal metallic contamination.
    El Zrelli R; Courjault-Radé P; Rabaoui L; Daghbouj N; Mansour L; Balti R; Castet S; Attia F; Michel S; Bejaoui N
    Environ Sci Pollut Res Int; 2017 Oct; 24(28):22214-22225. PubMed ID: 28795327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seagrass ecosystems in the Western Indian Ocean.
    Gullström M; de la Torre Castro M; Bandeira S; Björk M; Dahlberg M; Kautsky N; Rönnbäck P; Ohman MC
    Ambio; 2002 Dec; 31(7-8):588-96. PubMed ID: 12572827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Against the odds: complete outcrossing in a monoecious clonal seagrass Posidonia australis (Posidoniaceae).
    Sinclair EA; Gecan I; Krauss SL; Kendrick GA
    Ann Bot; 2014 Jun; 113(7):1185-96. PubMed ID: 24812250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Profiling the cell walls of seagrasses from A (Amphibolis) to Z (Zostera).
    Pfeifer L; van Erven G; Sinclair EA; Duarte CM; Kabel MA; Classen B
    BMC Plant Biol; 2022 Feb; 22(1):63. PubMed ID: 35120456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.