These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26194069)

  • 1. Identifiability of PBPK models with applications to dimethylarsinic acid exposure.
    Garcia RI; Ibrahim JG; Wambaugh JF; Kenyon EM; Setzer RW
    J Pharmacokinet Pharmacodyn; 2015 Dec; 42(6):591-609. PubMed ID: 26194069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.
    Park ES; Symanski E; Han D; Spiegelman C
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):51-113. PubMed ID: 26333239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of the uncertainty in the validation of PBPK models: A case-study for PFOS and PFOA.
    Fàbrega F; Nadal M; Schuhmacher M; Domingo JL; Kumar V
    Regul Toxicol Pharmacol; 2016 Jun; 77():230-9. PubMed ID: 26993749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physiologically based pharmacokinetic model for intravenous and ingested dimethylarsinic acid in mice.
    Evans MV; Dowd SM; Kenyon EM; Hughes MF; El-Masri HA
    Toxicol Sci; 2008 Aug; 104(2):250-60. PubMed ID: 18430741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural identifiability of PBPK models: practical consequences for modeling strategies and study designs.
    Slob W; Janssen PH; van den Hof JM
    Crit Rev Toxicol; 1997 May; 27(3):261-72. PubMed ID: 9189655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using publicly available data, a physiologically-based pharmacokinetic model and Bayesian simulation to improve arsenic non-cancer dose-response.
    Dong Z; Liu C; Liu Y; Yan K; Semple KT; Naidu R
    Environ Int; 2016; 92-93():239-46. PubMed ID: 27107229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of in vitro data in developing a physiologically based pharmacokinetic model: Carbaryl as a case study.
    Yoon M; Kedderis GL; Yan GZ; Clewell HJ
    Toxicology; 2015 Jun; 332():52-66. PubMed ID: 24863738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches for applications of physiologically based pharmacokinetic models in risk assessment.
    Thompson CM; Sonawane B; Barton HA; DeWoskin RS; Lipscomb JC; Schlosser P; Chiu WA; Krishnan K
    J Toxicol Environ Health B Crit Rev; 2008 Aug; 11(7):519-47. PubMed ID: 18584453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local Identifiability Analysis, Parameter Subset Selection and Verification for a Minimal Brain PBPK Model.
    Dadashova K; Smith RC; Haider MA
    Bull Math Biol; 2024 Jan; 86(2):12. PubMed ID: 38170402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of PBPK models for risk characterization.
    Bois FY
    Ann N Y Acad Sci; 1999; 895():317-37. PubMed ID: 10676425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of Life-Stage Physiologically Based Pharmacokinetic Models with Adverse Outcome Pathways and Environmental Exposure Models to Screen for Environmental Hazards.
    El-Masri H; Kleinstreuer N; Hines RN; Adams L; Tal T; Isaacs K; Wetmore BA; Tan YM
    Toxicol Sci; 2016 Jul; 152(1):230-43. PubMed ID: 27208077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSARs for PBPK modelling of environmental contaminants.
    Peyret T; Krishnan K
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):129-69. PubMed ID: 21391145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Part 1. Statistical Learning Methods for the Effects of Multiple Air Pollution Constituents.
    Coull BA; Bobb JF; Wellenius GA; Kioumourtzoglou MA; Mittleman MA; Koutrakis P; Godleski JJ
    Res Rep Health Eff Inst; 2015 Jun; (183 Pt 1-2):5-50. PubMed ID: 26333238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically based pharmacokinetic modeling of arsenic in the mouse.
    Gentry PR; Covington TR; Mann S; Shipp AM; Yager JW; Clewell HJ
    J Toxicol Environ Health A; 2004 Jan; 67(1):43-71. PubMed ID: 14668111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joining forces of Bayesian and frequentist methodology: a study for inference in the presence of non-identifiability.
    Raue A; Kreutz C; Theis FJ; Timmer J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1984):20110544. PubMed ID: 23277602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises.
    Weijs L; Yang RS; Das K; Covaci A; Blust R
    Environ Sci Technol; 2013 May; 47(9):4365-74. PubMed ID: 23560461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiologically-based pharmacokinetic and toxicokinetic models for estimating human exposure to five toxic elements through oral ingestion.
    Dede E; Tindall MJ; Cherrie JW; Hankin S; Collins C
    Environ Toxicol Pharmacol; 2018 Jan; 57():104-114. PubMed ID: 29253785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.