These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26194112)

  • 21. New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders.
    Moyses-Oliveira M; Yadav R; Erdin S; Talkowski ME
    Curr Opin Genet Dev; 2020 Dec; 65():195-206. PubMed ID: 32846283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wnt/β-catenin signaling regulated SATB1 promotes colorectal cancer tumorigenesis and progression.
    Mir R; Pradhan SJ; Patil P; Mulherkar R; Galande S
    Oncogene; 2016 Mar; 35(13):1679-91. PubMed ID: 26165840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells.
    Kim IS; Jeong SJ; Kim SH; Jung JH; Park YG; Kim SH
    Biochem Biophys Res Commun; 2012 Jan; 417(2):697-703. PubMed ID: 22166200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific gene expression patterns of 108 schizophrenia-associated loci in cortex.
    Ohi K; Shimada T; Nitta Y; Kihara H; Okubo H; Uehara T; Kawasaki Y
    Schizophr Res; 2016 Jul; 174(1-3):35-38. PubMed ID: 27061659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SATB2 suppresses the progression of colorectal cancer cells via inactivation of MEK5/ERK5 signaling.
    Mansour MA; Hyodo T; Ito S; Kurita K; Kokuryo T; Uehara K; Nagino M; Takahashi M; Hamaguchi M; Senga T
    FEBS J; 2015 Apr; 282(8):1394-405. PubMed ID: 25662172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coexpression enrichment analysis at the single-cell level reveals convergent defects in neural progenitor cells and their cell-type transitions in neurodevelopmental disorders.
    Pang K; Wang L; Wang W; Zhou J; Cheng C; Han K; Zoghbi HY; Liu Z
    Genome Res; 2020 Jun; 30(6):835-848. PubMed ID: 32554779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Congenital Heart Disease and Neurodevelopment: Clinical Manifestations, Genetics, Mechanisms, and Implications.
    Nattel SN; Adrianzen L; Kessler EC; Andelfinger G; Dehaes M; Côté-Corriveau G; Trelles MP
    Can J Cardiol; 2017 Dec; 33(12):1543-1555. PubMed ID: 29173597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soma-to-germline transformation in chromatin-linked neurodevelopmental disorders?
    Bonefas KM; Iwase S
    FEBS J; 2022 Apr; 289(8):2301-2317. PubMed ID: 34514717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification of TCF7L2/TCF4 target miRNAs reveals a role for miR-21 in Wnt-driven epithelial cancer.
    Lan F; Yue X; Han L; Shi Z; Yang Y; Pu P; Yao Z; Kang C
    Int J Oncol; 2012 Feb; 40(2):519-26. PubMed ID: 21956205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The chromatin basis of neurodevelopmental disorders: Rethinking dysfunction along the molecular and temporal axes.
    Gabriele M; Lopez Tobon A; D'Agostino G; Testa G
    Prog Neuropsychopharmacol Biol Psychiatry; 2018 Jun; 84(Pt B):306-327. PubMed ID: 29309830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges.
    Guerreiro S; Maciel P
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted sequencing and integrative analysis to prioritize candidate genes in neurodevelopmental disorders.
    Zhang Y; Wang T; Wang Y; Xia K; Li J; Sun Z
    Mol Neurobiol; 2021 Aug; 58(8):3863-3873. PubMed ID: 33860439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9-mediated heterozygous knockout of the autism gene CHD8 and characterization of its transcriptional networks in neurodevelopment.
    Wang P; Lin M; Pedrosa E; Hrabovsky A; Zhang Z; Guo W; Lachman HM; Zheng D
    Mol Autism; 2015; 6():55. PubMed ID: 26491539
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells.
    Norton L; Chen X; Fourcaudot M; Acharya NK; DeFronzo RA; Heikkinen S
    Nucleic Acids Res; 2014 Dec; 42(22):13646-61. PubMed ID: 25414334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decreased SATB2 expression is associated with metastasis and poor prognosis in human clear cell renal cell carcinoma.
    Guo C; Xiong D; Yao X; Gu W; Zhang H; Yang B; Peng B; Liu M; Zheng J
    Int J Clin Exp Pathol; 2015; 8(4):3710-8. PubMed ID: 26097552
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of transcription factor Satb2 in adult mouse brain.
    Huang Y; Song NN; Lan W; Hu L; Su CJ; Ding YQ; Zhang L
    Anat Rec (Hoboken); 2013 Mar; 296(3):452-61. PubMed ID: 23386513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene Transfer Therapy for Neurodevelopmental Disorders.
    Ozlu C; Bailey RM; Sinnett S; Goodspeed KD
    Dev Neurosci; 2021; 43(3-4):230-240. PubMed ID: 33882495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sequence Mining of Comorbid Neurodevelopmental Disorders Using the SPADE Algorithm.
    Pimus I; Peleg M; Schertz M
    Methods Inf Med; 2016 May; 55(3):223-33. PubMed ID: 26848079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway.
    Hao J; Zhang L; Cong G; Ren L; Hao L
    Cell Tissue Res; 2016 Dec; 366(3):733-746. PubMed ID: 27503378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.
    Wang F; Tidei JJ; Polich ED; Gao Y; Zhao H; Perrone-Bizzozero NI; Guo W; Zhao X
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):E4995-5004. PubMed ID: 26305964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.