BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 26194176)

  • 1. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.
    Uchida N; Sivaraman S; Amoroso NJ; Wagner WR; Nishiguchi A; Matsusaki M; Akashi M; Nagatomi J
    J Biomed Mater Res A; 2016 Jan; 104(1):94-103. PubMed ID: 26194176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of selective attachment and growth of smooth muscle cells on gelatin- and fibronectin-coated micropatterns.
    Li M; Cui T; Mills DK; Lvov YM; McShane MJ
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1809-15. PubMed ID: 16433414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Poly (Carbonate-Urethane) Urea (PCUU) Scaffolds for Urinary Bladder Tissue Engineering.
    Sivaraman S; Amoroso N; Gu X; Purves JT; Hughes FM; Wagner WR; Nagatomi J
    Ann Biomed Eng; 2019 Mar; 47(3):891-901. PubMed ID: 30542784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular response to gelatin- and fibronectin-coated multilayer polyelectrolyte nanofilms.
    Li M; Mills DK; Cui T; Mcshane MJ
    IEEE Trans Nanobioscience; 2005 Jun; 4(2):170-9. PubMed ID: 16117025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity.
    Lee J; Yoo JJ; Atala A; Lee SJ
    Acta Biomater; 2012 Jul; 8(7):2549-58. PubMed ID: 22465575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Tissue Models Constructed by Cells with Nanometer- or Micrometer-Sized Films on the Surfaces.
    Liu CY; Matsusaki M; Akashi M
    Chem Rec; 2016 Apr; 16(2):783-96. PubMed ID: 26924465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TGFβ2 differentially modulates smooth muscle cell proliferation and migration in electrospun gelatin-fibrinogen constructs.
    Ardila DC; Tamimi E; Danford FL; Haskett DG; Kellar RS; Doetschman T; Vande Geest JP
    Biomaterials; 2015 Jan; 37():164-73. PubMed ID: 25453947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.
    Gu X; Mao Z; Ye SH; Koo Y; Yun Y; Tiasha TR; Shanov V; Wagner WR
    Colloids Surf B Biointerfaces; 2016 Aug; 144():170-179. PubMed ID: 27085049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchically designed electrospun tubular scaffolds for cardiovascular applications.
    Shalumon KT; Sreerekha PR; Sathish D; Tamura H; Nair SV; Chennazhi KP; Jayakumar R
    J Biomed Nanotechnol; 2011 Oct; 7(5):609-20. PubMed ID: 22195478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
    Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle tissue engineering in crosslinked electrospun gelatin scaffolds.
    Elsayed Y; Lekakou C; Labeed F; Tomlins P
    J Biomed Mater Res A; 2016 Jan; 104(1):313-21. PubMed ID: 26378902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of a multilayered small-diameter vascular scaffold dual-loaded with VEGF and PDGF.
    Han F; Jia X; Dai D; Yang X; Zhao J; Zhao Y; Fan Y; Yuan X
    Biomaterials; 2013 Oct; 34(30):7302-13. PubMed ID: 23830580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myogenic differentiation of human bone marrow mesenchymal stem cells on a 3D nano fibrous scaffold for bladder tissue engineering.
    Tian H; Bharadwaj S; Liu Y; Ma H; Ma PX; Atala A; Zhang Y
    Biomaterials; 2010 Feb; 31(5):870-7. PubMed ID: 19853294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological properties of a bionic scaffold for esophageal tissue engineering research.
    Hou R; Wang X; Wei Q; Feng P; Mou X; Zhu Y; Shen Z
    Colloids Surf B Biointerfaces; 2019 Jul; 179():208-217. PubMed ID: 30959233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering.
    Xu C; Inai R; Kotaki M; Ramakrishna S
    Tissue Eng; 2004; 10(7-8):1160-8. PubMed ID: 15363172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.
    Franck D; Gil ES; Adam RM; Kaplan DL; Chung YG; Estrada CR; Mauney JR
    PLoS One; 2013; 8(2):e56237. PubMed ID: 23409160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bladder smooth muscle cells on electrospun poly(ε-caprolactone)/poly(l-lactic acid) scaffold promote bladder regeneration in a canine model.
    Shakhssalim N; Soleimani M; Dehghan MM; Rasouli J; Taghizadeh-Jahed M; Torbati PM; Naji M
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():877-884. PubMed ID: 28415542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering.
    Vatankhah E; Prabhakaran MP; Semnani D; Razavi S; Morshed M; Ramakrishna S
    Biopolymers; 2014 Dec; 101(12):1165-80. PubMed ID: 25042000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vitro and In Vivo investigations on fibronectin coated and hydroxyapatite incorporated scaffolds.
    Mohamadyar-Toupkanlou F; Vasheghani-Farahani E; Bakhshandeh B; Soleimani M; Ardeshirylajimi A
    Cell Mol Biol (Noisy-le-grand); 2015 Aug; 61(4):1-7. PubMed ID: 26255261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.