BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26194236)

  • 1. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components.
    Maharana D; Das PB; Verlecar XN; Pise NM; Gauns M
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18741-9. PubMed ID: 26194236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of proteins involved in desiccation tolerance in the red seaweed Pyropia orbicularis (Rhodophyta, Bangiales).
    López-Cristoffanini C; Zapata J; Gaillard F; Potin P; Correa JA; Contreras-Porcia L
    Proteomics; 2015 Dec; 15(23-24):3954-68. PubMed ID: 26154304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species.
    Guajardo E; Correa JA; Contreras-Porcia L
    Planta; 2016 Mar; 243(3):767-81. PubMed ID: 26687373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulating Effect of
    Balamurugan M; Sivakumar K; Mariadoss AV; Suresh K
    Pharmacognosy Res; 2017; 9(1):108-115. PubMed ID: 28250663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation.
    Burritt DJ; Larkindale J; Hurd CL
    Planta; 2002 Sep; 215(5):829-38. PubMed ID: 12244449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional Status as the Key Modulator of Antioxidant Responses Induced by High Environmental Ammonia and Salinity Stress in European Sea Bass (Dicentrarchus labrax).
    Sinha AK; AbdElgawad H; Zinta G; Dasan AF; Rasoloniriana R; Asard H; Blust R; De Boeck G
    PLoS One; 2015; 10(8):e0135091. PubMed ID: 26241315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental Stress Tolerance and Antioxidant Response of Palisada perforata (Rhodophyta) from a Tropical Reef
    Vasconcelos JB; Vasconcelos ERTPP; Urrea-Victoria V; Bezerra PS; Cocentino ALM; Navarro DMAF; Chow F; Fujii MT
    J Phycol; 2021 Jun; 57(3):1045-1058. PubMed ID: 33624289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of Functional Verification to Abiotic Stress through Antioxidant Gene Transformation of
    Lee HJ; Yang HY; Choi JI
    J Microbiol Biotechnol; 2018 Jul; 28(7):1217-1224. PubMed ID: 29913549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological damages of Sargassum cymosum and Hypnea pseudomusciformis exposed to trace metals from mining tailing.
    Costa GB; Ramlov F; de Ramos B; Koerich G; Gouvea L; Costa PG; Bianchini A; Maraschin M; Horta PA
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36486-36498. PubMed ID: 31732948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Random Distribution and Ecophysiological Differentiation of Pyropia Species (Bangiales, Rhodophyta) Through Environmental Gradients.
    Zapata J; Meynard A; Anguita C; Espinoza C; Alvear P; Kumar M; Contreras-Porcia L
    J Phycol; 2019 Oct; 55(5):1140-1153. PubMed ID: 31295353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in oxidative stress indices of two green seaweeds growing under different heavy metal stresses.
    Ismail GA; Ismail MM
    Environ Monit Assess; 2017 Feb; 189(2):68. PubMed ID: 28116602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress response in the seagrass Posidonia oceanica and the seaweed Dasycladus vermicularis associated to the invasive tropical green seaweed Halimeda incrassata.
    Sureda A; Tejada S; Capó X; Melià C; Ferriol P; Pinya S; Mateu-Vicens G
    Sci Total Environ; 2017 Dec; 601-602():918-925. PubMed ID: 28582737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of substituted aryl meroterpenoids from red seaweed Hypnea musciformis as potential antioxidants.
    Chakraborty K; Joseph D; Joy M; Raola VK
    Food Chem; 2016 Dec; 212():778-88. PubMed ID: 27374595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Red Seaweed (Hypnea Bryodies and Melanothamnus Somalensis) Extracts Counteracting Azoxymethane-Induced Hepatotoxicity in Rats.
    Waly MI; Al Alawi AA; Al Marhoobi IM; Rahman MSh
    Asian Pac J Cancer Prev; 2016 Dec; 17(12):5071-5074. PubMed ID: 28122436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,3,7,8-TCDD-mediated toxicity in peripheral blood mononuclear cells is alleviated by the antioxidants present in Gelidiella acerosa: an in vitro study.
    Kalaiselvan I; Senthamarai M; Kasi PD
    Environ Sci Pollut Res Int; 2016 Mar; 23(6):5111-21. PubMed ID: 25388558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity.
    Paital B; Chainy GB
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):142-51. PubMed ID: 19796708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of eutrophic seawater and temperature on the physiology and morphology of Hypnea musciformis J. V. Lamouroux (Gigartinales, Rhodophyta).
    de Faveri C; Schmidt ÉC; Simioni C; Martins CD; Bonomi-Barufi J; Horta PA; Bouzon ZL
    Ecotoxicology; 2015 Jul; 24(5):1040-52. PubMed ID: 25750015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the red seaweed Mastocarpus stellatus intake on lipid metabolism and antioxidant status in healthy Wistar rats.
    Gómez-Ordóñez E; Jiménez-Escrig A; Rupérez P
    Food Chem; 2012 Nov; 135(2):806-11. PubMed ID: 22868162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome and proteome analysis reveals the anti-cancer properties of Hypnea musciformis marine macroalga extract in liver and intestinal cancer cells.
    Begolli R; Chatziangelou M; Samiotaki M; Goutas A; Barda S; Goutzourelas N; Kevrekidis DP; Malea P; Trachana V; Liu M; Lin X; Kollatos N; Stagos D; Giakountis A
    Hum Genomics; 2023 Jul; 17(1):71. PubMed ID: 37525271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal acclimatization of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances.
    Lohrmann NL; Logan BA; Johnson AS
    Biol Bull; 2004 Dec; 207(3):225-32. PubMed ID: 15616353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.