BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1269 related articles for article (PubMed ID: 26194462)

  • 1. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology Selectivity in On-Surface Dehydrogenative Coupling Reaction: Dendritic Structure
    Huang J; Pan Y; Wang T; Cui S; Feng L; Han D; Zhang W; Zeng Z; Li X; Du P; Wu X; Zhu J
    ACS Nano; 2021 Mar; 15(3):4617-4626. PubMed ID: 33591725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecules-oligomers-nanowires-graphene nanoribbons: a bottom-up stepwise on-surface covalent synthesis preserving long-range order.
    Basagni A; Sedona F; Pignedoli CA; Cattelan M; Nicolas L; Casarin M; Sambi M
    J Am Chem Soc; 2015 Feb; 137(5):1802-8. PubMed ID: 25582946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks.
    Eichhorn J; Nieckarz D; Ochs O; Samanta D; Schmittel M; Szabelski PJ; Lackinger M
    ACS Nano; 2014 Aug; 8(8):7880-9. PubMed ID: 25036422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured nonprecious metal catalysts for oxygen reduction reaction.
    Wu G; Zelenay P
    Acc Chem Res; 2013 Aug; 46(8):1878-89. PubMed ID: 23815084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling.
    He Y; Garnica M; Bischoff F; Ducke J; Bocquet ML; Batzill M; Auwärter W; Barth JV
    Nat Chem; 2017 Jan; 9(1):33-38. PubMed ID: 27995925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ullmann-Like Covalent Bond Coupling without Participation of Metal Atoms.
    Zhang T; Li R; Hao X; Zhang Q; Yang H; Hou Y; Hou B; Jia L; Jiang K; Zhang Y; Wu X; Zhuang X; Liu L; Yao Y; Guo W; Wang Y
    ACS Nano; 2023 Mar; 17(5):4387-4395. PubMed ID: 36802507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes.
    Klappenberger F; Zhang YQ; Björk J; Klyatskaya S; Ruben M; Barth JV
    Acc Chem Res; 2015 Jul; 48(7):2140-50. PubMed ID: 26156663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversibility and intermediate steps as key tools for the growth of extended ordered polymers via on-surface synthesis.
    Di Giovannantonio M; Contini G
    J Phys Condens Matter; 2018 Mar; 30(9):093001. PubMed ID: 29345628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene.
    Deshpande A; Sham CH; Alaboson JM; Mullin JM; Schatz GC; Hersam MC
    J Am Chem Soc; 2012 Oct; 134(40):16759-64. PubMed ID: 22928587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Dimensional Porous Polymers: From Sandwich-like Structure to Layered Skeleton.
    Zhu J; Yang C; Lu C; Zhang F; Yuan Z; Zhuang X
    Acc Chem Res; 2018 Dec; 51(12):3191-3202. PubMed ID: 30411885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isomeric routes to Schiff-base single-layered covalent organic frameworks.
    Liu XH; Mo YP; Yue JY; Zheng QN; Yan HJ; Wang D; Wan LJ
    Small; 2014 Dec; 10(23):4934-9. PubMed ID: 25048172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors.
    Chen YC; de Oteyza DG; Pedramrazi Z; Chen C; Fischer FR; Crommie MF
    ACS Nano; 2013 Jul; 7(7):6123-8. PubMed ID: 23746141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy.
    Simonov KA; Vinogradov NA; Vinogradov AS; Generalov AV; Zagrebina EM; Svirskiy GI; Cafolla AA; Carpy T; Cunniffe JP; Taketsugu T; Lyalin A; Mårtensson N; Preobrajenski AB
    ACS Nano; 2015 Sep; 9(9):8997-9011. PubMed ID: 26301684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-Up On-Surface Synthesis of Two-Dimensional Graphene Nanoribbon Networks and Their Thermoelectric Properties.
    Kojima T; Nakae T; Xu Z; Saravanan C; Watanabe K; Nakamura Y; Sakaguchi H
    Chem Asian J; 2019 Dec; 14(23):4400-4407. PubMed ID: 31724299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards nano-organic chemistry: perspectives for a bottom-up approach to the synthesis of low-dimensional carbon nanostructures.
    Mercuri F; Baldoni M; Sgamellotti A
    Nanoscale; 2012 Jan; 4(2):369-79. PubMed ID: 22167069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.