These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26195135)

  • 41. Branching patterns in the porcine coronary arterial tree. Estimation of flow heterogeneity.
    VanBavel E; Spaan JA
    Circ Res; 1992 Nov; 71(5):1200-12. PubMed ID: 1394880
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of the volume-averaged Murray's deviation method for the characterization of branching geometry in liver fibrosis: a preliminary study on vascular circulation.
    Lv W; Jian J; Liu J; Zhao X; Xin X; Hu C
    Quant Imaging Med Surg; 2022 Feb; 12(2):979-991. PubMed ID: 35111599
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks.
    Köppl T; Vidotto E; Wohlmuth B
    Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3386. PubMed ID: 32659047
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Numerical Simulation of Unsteady Blood Flow through Capillary Networks.
    Davis JM; Pozrikidis C
    Bull Math Biol; 2011 Aug; 73(8):1857-80. PubMed ID: 21061079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of the Gatortail method for accurate sizing of pulmonary vessels from 3D medical images.
    O'Dell WG; Gormaley AK; Prida DA
    Med Phys; 2017 Dec; 44(12):6314-6328. PubMed ID: 28905390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deviation from Murray's law is associated with a higher degree of calcification in coronary bifurcations.
    Schoenenberger AW; Urbanek N; Toggweiler S; Seelos R; Jamshidi P; Resink TJ; Erne P
    Atherosclerosis; 2012 Mar; 221(1):124-30. PubMed ID: 22261173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microvscular networks with uniform flow.
    Chang SS; Roper M
    J Theor Biol; 2019 Feb; 462():48-64. PubMed ID: 30420333
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transit time dispersion in the pulmonary arterial tree.
    Clough AV; Haworth ST; Hanger CC; Wang J; Roerig DL; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1998 Aug; 85(2):565-74. PubMed ID: 9688734
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The coronary vasculature and its reconstruction.
    Kassab GS
    Ann Biomed Eng; 2000 Aug; 28(8):903-15. PubMed ID: 11144674
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Volume ordering for analysis and modeling of vascular systems.
    Marxen M; Sled JG; Henkelman RM
    Ann Biomed Eng; 2009 Mar; 37(3):542-51. PubMed ID: 19107598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
    Sohrabi S; Wang S; Tan J; Xu J; Yang J; Liu Y
    J Biomech; 2017 Jan; 50():240-247. PubMed ID: 27863742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A hemodynamic model representation of the dog lung.
    Haworth ST; Linehan JH; Bronikowski TA; Dawson CA
    J Appl Physiol (1985); 1991 Jan; 70(1):15-26. PubMed ID: 2010370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Computational fluid dynamics of the right ventricular outflow tract and of the pulmonary artery: a bench model of flow dynamics.
    Mosbahi S; Mickaily-Huber E; Charbonnier D; Hullin R; Burki M; Ferrari E; von Segesser LK; Berdajs DA
    Interact Cardiovasc Thorac Surg; 2014 Oct; 19(4):611-6. PubMed ID: 24948576
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of increasing blood flow on distribution of pulmonary transit times in man.
    Kuikka JT
    Physiol Meas; 2000 May; 21(2):241-50. PubMed ID: 10847191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. MDCT-based quantification of porcine pulmonary arterial morphometry and self-similarity of arterial branching geometry.
    Lee YC; Clark AR; Fuld MK; Haynes S; Divekar AA; Hoffman EA; Tawhai MH
    J Appl Physiol (1985); 2013 May; 114(9):1191-201. PubMed ID: 23449941
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pulmonary arterial morphometry from microfocal X-ray computed tomography.
    Karau KL; Molthen RC; Dhyani A; Haworth ST; Hanger CC; Roerig DL; Johnson RH; Dawson CA
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2747-56. PubMed ID: 11709444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A fractal continuum model of the pulmonary arterial tree.
    Krenz GS; Linehan JH; Dawson CA
    J Appl Physiol (1985); 1992 Jun; 72(6):2225-37. PubMed ID: 1629077
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extension of Murray's law using a non-Newtonian model of blood flow.
    Revellin R; Rousset F; Baud D; Bonjour J
    Theor Biol Med Model; 2009 May; 6():7. PubMed ID: 19445663
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On the principles of the vascular network branching.
    Gafiychuk VV; Lubashevsky IA
    J Theor Biol; 2001 Sep; 212(1):1-9. PubMed ID: 11527441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.