These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26195135)

  • 61. An integrated geometric modelling framework for patient-specific computational haemodynamic study on wide-ranged vascular network.
    Torii R; Oshima M
    Comput Methods Biomech Biomed Engin; 2012; 15(6):615-25. PubMed ID: 21736445
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pulmonary vascular resistance during unilateral pulmonary arterial occlusion in ducks.
    Powell FL; Hastings RH; Mazzone RW
    Am J Physiol; 1985 Jul; 249(1 Pt 2):R39-43. PubMed ID: 4014495
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optimality in the developing vascular system: branching remodeling by means of intussusception as an efficient adaptation mechanism.
    Djonov VG; Kurz H; Burri PH
    Dev Dyn; 2002 Aug; 224(4):391-402. PubMed ID: 12203731
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Recent developments in 3-D reconstruction and stereology to study the pulmonary vasculature.
    Mühlfeld C; Wrede C; Knudsen L; Buchacker T; Ochs M; Grothausmann R
    Am J Physiol Lung Cell Mol Physiol; 2018 Aug; 315(2):L173-L183. PubMed ID: 29644892
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Heterogeneous mechanics of the mouse pulmonary arterial network.
    Lee P; Carlson BE; Chesler N; Olufsen MS; Qureshi MU; Smith NP; Sochi T; Beard DA
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1245-61. PubMed ID: 26792789
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Cat lung hemodynamics: comparison of experimental results and model predictions.
    Krishnan A; Linehan JH; Rickaby DA; Dawson CA
    J Appl Physiol (1985); 1986 Dec; 61(6):2023-34. PubMed ID: 3804911
    [TBL] [Abstract][Full Text] [Related]  

  • 68. An effective model of blood flow in capillary beds.
    Acosta S; Penny DJ; Rusin CG
    Microvasc Res; 2015 Jul; 100():40-7. PubMed ID: 25936622
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Modeling the effect of blood vessel bifurcation ratio on occlusive thrombus formation.
    Lakshmanan HHS; Shatzel JJ; Olson SR; McCarty OJT; Maddala J
    Comput Methods Biomech Biomed Engin; 2019 Aug; 22(11):972-980. PubMed ID: 31066295
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Computational predictions of pulmonary blood flow gradients: gravity versus structure.
    Burrowes KS; Tawhai MH
    Respir Physiol Neurobiol; 2006 Dec; 154(3):515-23. PubMed ID: 16386472
    [TBL] [Abstract][Full Text] [Related]  

  • 71. On the linear stability of blood flow through model capillary networks.
    Davis JM
    Bull Math Biol; 2014 Dec; 76(12):2985-3015. PubMed ID: 25410686
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dermal Lymphatic Capillaries Do Not Obey Murray's Law.
    Talkington AM; Davis RB; Datto NC; Goodwin ER; Miller LA; Caron KM
    Front Cardiovasc Med; 2022; 9():840305. PubMed ID: 35498025
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Refining Our Understanding of the Flow Through Coronary Artery Branches; Revisiting Murray's Law in Human Epicardial Coronary Arteries.
    Taylor DJ; Feher J; Halliday I; Hose DR; Gosling R; Aubiniere-Robb L; van 't Veer M; Keulards D; Tonino PAL; Rochette M; Gunn J; Morris PD
    Front Physiol; 2022; 13():871912. PubMed ID: 35600296
    [No Abstract]   [Full Text] [Related]  

  • 74. Branching pattern of pulmonary arterial tree in anesthetized dogs.
    Liu YH; Ritman EL
    J Biomech Eng; 1986 Aug; 108(3):289-93. PubMed ID: 3747473
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; End A; Müller MR
    J Theor Biol; 1996 May; 180(2):161-74. PubMed ID: 8763367
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regional blood flow analysis and its relationship with arterial branch lengths and lumen volume in the coronary arterial tree.
    Molloi S; Wong JT
    Phys Med Biol; 2007 Mar; 52(5):1495-503. PubMed ID: 17301467
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Predicting bifurcation angle effect on blood flow in the microvasculature.
    Yang J; Pak YE; Lee TR
    Microvasc Res; 2016 Nov; 108():22-8. PubMed ID: 27389627
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Scaling laws for branching vessels of human cerebral cortex.
    Cassot F; Lauwers F; Lorthois S; Puwanarajah P; Duvernoy H
    Microcirculation; 2009 May; 16(4):331-44, 2 p following 344. PubMed ID: 19301179
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Automatic reconstruction of the arterial and venous trees on volumetric chest CT.
    Park S; Lee SM; Kim N; Seo JB; Shin H
    Med Phys; 2013 Jul; 40(7):071906. PubMed ID: 23822443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.