BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 26195169)

  • 41. Tripchlorolide improves age-associated cognitive deficits by reversing hippocampal synaptic plasticity impairment and NMDA receptor dysfunction in SAMP8 mice.
    Lin N; Pan XD; Chen AQ; Zhu YG; Wu M; Zhang J; Chen XC
    Behav Brain Res; 2014 Jan; 258():8-18. PubMed ID: 24140565
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges.
    Lopantsev V; Both M; Draguhn A
    Eur J Neurosci; 2009 Mar; 29(6):1153-64. PubMed ID: 19302151
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Frontiers of model animals for neuroscience: two prosperous aging model animals for promoting neuroscience research.
    Ito K
    Exp Anim; 2013; 62(4):275-80. PubMed ID: 24172191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice.
    Li G; Cheng H; Zhang X; Shang X; Xie H; Zhang X; Yu J; Han J
    Neurol Sci; 2013 Jun; 34(6):963-9. PubMed ID: 22872064
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer's disease.
    del Valle J; Bayod S; Camins A; Beas-Zárate C; Velázquez-Zamora DA; González-Burgos I; Pallàs M
    J Alzheimers Dis; 2012; 32(1):233-40. PubMed ID: 22776969
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related spatial cognitive impairment is correlated with a decrease in ChAT in the cerebral cortex, hippocampus and forebrain of SAMP8 mice.
    Wang F; Chen H; Sun X
    Neurosci Lett; 2009 May; 454(3):212-7. PubMed ID: 19429086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Age-related expression of calcium/calmodulin-dependent protein kinase II A in the hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti-Alzheimer's disease drugs.
    Zhang GR; Cheng XR; Zhou WX; Zhang YX
    Neuroscience; 2009 Mar; 159(1):308-15. PubMed ID: 18721865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. D-serine enhances impaired long-term potentiation in CA1 subfield of hippocampal slices from aged senescence-accelerated mouse prone/8.
    Yang S; Qiao H; Wen L; Zhou W; Zhang Y
    Neurosci Lett; 2005 Apr; 379(1):7-12. PubMed ID: 15814189
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accelerated senescence prone mouse-8 shows early onset of deficits in spatial learning and memory in the radial six-arm water maze.
    Chen GH; Wang YJ; Wang XM; Zhou JN
    Physiol Behav; 2004 Oct; 82(5):883-90. PubMed ID: 15451654
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Age-related deterioration of long-term potentiation in the CA3 and CA1 regions of hippocampal slices from the senescence-accelerated mouse.
    Katsuki H; Ishihara K; Shimada A; Takeda T; Satoh M
    Arch Gerontol Geriatr; 1990; 11(1):77-83. PubMed ID: 15374495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Attenuated plasticity of postsynaptic kainate receptors in hippocampal CA3 pyramidal neurons.
    Ito K; Contractor A; Swanson GT
    J Neurosci; 2004 Jul; 24(27):6228-36. PubMed ID: 15240815
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-term potentiation and memory.
    Lynch MA
    Physiol Rev; 2004 Jan; 84(1):87-136. PubMed ID: 14715912
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of aging on hippocampal function: plasticity, network dynamics, and cognition.
    Rosenzweig ES; Barnes CA
    Prog Neurobiol; 2003 Feb; 69(3):143-79. PubMed ID: 12758108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of age on calcium-dependent proteins in hippocampus of senescence-accelerated mice.
    Armbrecht HJ; Boltz MA; Kumar VB; Flood JF; Morley JE
    Brain Res; 1999 Sep; 842(2):287-93. PubMed ID: 10526125
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway.
    Bach ME; Barad M; Son H; Zhuo M; Lu YF; Shih R; Mansuy I; Hawkins RD; Kandel ER
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5280-5. PubMed ID: 10220457
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Behavioral assessment of the senescence-accelerated mouse (SAM P8 and R1).
    Markowska AL; Spangler EL; Ingram DK
    Physiol Behav; 1998 Apr; 64(1):15-26. PubMed ID: 9661977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1.
    Shankar S; Teyler TJ; Robbins N
    J Neurophysiol; 1998 Jan; 79(1):334-41. PubMed ID: 9425202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse (SAM).
    Flood JF; Morley JE
    Neurobiol Aging; 1993; 14(2):153-7. PubMed ID: 8487918
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A synaptic model of memory: long-term potentiation in the hippocampus.
    Bliss TV; Collingridge GL
    Nature; 1993 Jan; 361(6407):31-9. PubMed ID: 8421494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hippocampal plasticity induced by primed burst, but not long-term potentiation, stimulation is impaired in area CA1 of aged Fischer 344 rats.
    Moore CI; Browning MD; Rose GM
    Hippocampus; 1993 Jan; 3(1):57-66. PubMed ID: 8364683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.