These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26195299)

  • 1. Inspection of notch depths in thin structures using transmission coefficients of laser-generated Lamb waves.
    Yang L; Ume IC
    Ultrasonics; 2015 Dec; 63():168-73. PubMed ID: 26195299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of weld penetration depths in thin structures using transmission coefficients of laser-generated Lamb waves and neural network.
    Yang L; Ume IC
    Ultrasonics; 2017 Jul; 78():96-109. PubMed ID: 28324778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of three-dimensional Lamb wave propagation excited by laser pulses.
    Liu W; Hong JW
    Ultrasonics; 2015 Jan; 55():113-22. PubMed ID: 25109827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison Study between RMS and Edge Detection Image Processing Algorithms for a Pulsed Laser UWPI (Ultrasonic Wave Propagation Imaging)-Based NDT Technique.
    Lee C; Zhang A; Yu B; Park S
    Sensors (Basel); 2017 May; 17(6):. PubMed ID: 28587124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of hidden defects using the near-field ultrasonic enhancement of Lamb waves.
    Clough AR; Edwards RS
    Ultrasonics; 2015 May; 59():64-71. PubMed ID: 25682295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates.
    Fan Z; Jiang W; Cai M; Wright WM
    Ultrasonics; 2016 Feb; 65():282-95. PubMed ID: 26464105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-contact ultrasonic technique for Lamb wave characterization in composite plates.
    Harb MS; Yuan FG
    Ultrasonics; 2016 Jan; 64():162-9. PubMed ID: 26385842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of the A0 and S0 Lamb waves interaction with symmetrical notches.
    Benmeddour F; Grondel S; Assaad J; Moulin E
    Ultrasonics; 2009 Feb; 49(2):202-5. PubMed ID: 18801547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Lorentz Force EMAT Design with Racetrack Coil and Periodic Permanent Magnets for Selective Enhancement of Ultrasonic Lamb Wave Generation.
    Guo X; Zhu W; Qiu X; Xiang Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves.
    Harb MS; Yuan FG
    Ultrasonics; 2015 Aug; 61():62-70. PubMed ID: 25847611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Electromagnetic Acoustic Transducer Design for Generating and Receiving S0 Lamb Waves in Ferromagnetic Steel Plate.
    He J; Dixon S; Hill S; Xu K
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28471377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves.
    García-Gómez J; Gil-Pita R; Rosa-Zurera M; Romero-Camacho A; Jiménez-Garrido JA; García-Benavides V
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29518927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin Copper Plate Defect Detection Based on Lamb Wave Generated by Pulsed Laser in Combination with Laser Heterodyne Interference Technique.
    Wang X; Zhu Z; Guo G; Sun X; Gong T; Tian Y; Zhou Y; Qiu X; He X; Chen H; Fittschen C; Li C
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple expressions of the reflection and transmission coefficients of fundamental Lamb waves by a rectangular notch.
    Kim B; Roh Y
    Ultrasonics; 2011 Aug; 51(6):734-44. PubMed ID: 21440925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing influence of multi-modes and dispersion of electromagnetic ultrasonic lamb waves.
    Zhai G; Jiang T; Kang L; Wang S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2725-33. PubMed ID: 21156368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser generation of Lamb waves for defect detection: experimental methods and finite element modeling.
    Burrows SE; Dutton B; Dixon S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):82-9. PubMed ID: 22293738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical study of the excitability of zero group velocity Lamb waves by laser-ultrasound.
    Grünsteidl CM; Veres IA; Murray TW
    J Acoust Soc Am; 2015 Jul; 138(1):242-50. PubMed ID: 26233023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transmission analysis of ultrasonic Lamb mode conversion in a plate with partial-thickness notch.
    Xu K; Ta D; Su Z; Wang W
    Ultrasonics; 2014 Jan; 54(1):395-401. PubMed ID: 23916666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time reversal technique for health monitoring of metallic structure using Lamb waves.
    Gangadharan R; Murthy CR; Gopalakrishnan S; Bhat MR
    Ultrasonics; 2009 Dec; 49(8):696-705. PubMed ID: 19539965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of Lamb waves with defects.
    Alleyne DN; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(3):381-97. PubMed ID: 18267648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.