BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26195627)

  • 21. Role of asparagine-linked oligosaccharides in rhodopsin maturation and association with its molecular chaperone, NinaA.
    Webel R; Menon I; O'Tousa JE; Colley NJ
    J Biol Chem; 2000 Aug; 275(32):24752-9. PubMed ID: 10811808
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of rhodopsin in late endosomes triggers photoreceptor cell degeneration.
    Chinchore Y; Mitra A; Dolph PJ
    PLoS Genet; 2009 Feb; 5(2):e1000377. PubMed ID: 19214218
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The retromer complex is required for rhodopsin recycling and its loss leads to photoreceptor degeneration.
    Wang S; Tan KL; Agosto MA; Xiong B; Yamamoto S; Sandoval H; Jaiswal M; Bayat V; Zhang K; Charng WL; David G; Duraine L; Venkatachalam K; Wensel TG; Bellen HJ
    PLoS Biol; 2014 Apr; 12(4):e1001847. PubMed ID: 24781186
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhodopsin mutations as the cause of retinal degeneration. Classification of degeneration phenotypes in the model system Drosophila melanogaster.
    Bentrop J
    Acta Anat (Basel); 1998; 162(2-3):85-94. PubMed ID: 9831754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Fluorescence-Based Genetic Screen to Study Retinal Degeneration in Drosophila.
    Huang Y; Xie J; Wang T
    PLoS One; 2015; 10(12):e0144925. PubMed ID: 26659849
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defective intracellular transport is the molecular basis of rhodopsin-dependent dominant retinal degeneration.
    Colley NJ; Cassill JA; Baker EK; Zuker CS
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):3070-4. PubMed ID: 7708777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homothorax controls a binary Rhodopsin switch in Drosophila ocelli.
    Mishra AK; Fritsch C; Voutev R; Mann RS; Sprecher SG
    PLoS Genet; 2021 Jul; 17(7):e1009460. PubMed ID: 34314427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Constitutively active mutants of rhodopsin.
    Robinson PR; Cohen GB; Zhukovsky EA; Oprian DD
    Neuron; 1992 Oct; 9(4):719-25. PubMed ID: 1356370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Counterion displacement in the molecular evolution of the rhodopsin family.
    Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y
    Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maintenance of Rhodopsin levels in Drosophila photoreceptor and phototransduction requires Protein Kinase D.
    Ashe S; Yadav S
    Fly (Austin); 2018; 12(3-4):164-173. PubMed ID: 30663936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gαq splice variants mediate phototransduction, rhodopsin synthesis, and retinal integrity in
    Gu Q; Wu J; Tian Y; Cheng S; Zhang ZC; Han J
    J Biol Chem; 2020 Apr; 295(17):5554-5563. PubMed ID: 32198182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of carboxylic acid side chains on the absorption maximum of visual pigments.
    Zhukovsky EA; Oprian DD
    Science; 1989 Nov; 246(4932):928-30. PubMed ID: 2573154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cone visual pigments.
    Imamoto Y; Shichida Y
    Biochim Biophys Acta; 2014 May; 1837(5):664-73. PubMed ID: 24021171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic survey reveals altered energetic patterns and metabolic failure prior to retinal degeneration.
    Griciuc A; Roux MJ; Merl J; Giangrande A; Hauck SM; Aron L; Ueffing M
    J Neurosci; 2014 Feb; 34(8):2797-812. PubMed ID: 24553922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutation of a TADR protein leads to rhodopsin and Gq-dependent retinal degeneration in Drosophila.
    Ni L; Guo P; Reddig K; Mitra M; Li HS
    J Neurosci; 2008 Dec; 28(50):13478-87. PubMed ID: 19074021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular cloning of Drosophila Rh6 rhodopsin: the visual pigment of a subset of R8 photoreceptor cells.
    Huber A; Schulz S; Bentrop J; Groell C; Wolfrum U; Paulsen R
    FEBS Lett; 1997 Apr; 406(1-2):6-10. PubMed ID: 9109375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin.
    Yan EC; Kazmi MA; Ganim Z; Hou JM; Pan D; Chang BS; Sakmar TP; Mathies RA
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9262-7. PubMed ID: 12835420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The V-ATPase V1 subunit A1 is required for rhodopsin anterograde trafficking in Drosophila.
    Zhao H; Wang J; Wang T
    Mol Biol Cell; 2018 Jul; 29(13):1640-1651. PubMed ID: 29742016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functions of Opsins in Drosophila Taste.
    Leung NY; Thakur DP; Gurav AS; Kim SH; Di Pizio A; Niv MY; Montell C
    Curr Biol; 2020 Apr; 30(8):1367-1379.e6. PubMed ID: 32243853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.