These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 26195771)

  • 1. Quantum dimer model for the pseudogap metal.
    Punk M; Allais A; Sachdev S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9552-7. PubMed ID: 26195771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact Solution of a Two-Species Quantum Dimer Model for Pseudogap Metals.
    Feldmeier J; Huber S; Punk M
    Phys Rev Lett; 2018 May; 120(18):187001. PubMed ID: 29775366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gauge approach to the 'pseudogap' phenomenology of the spectral weight in high Tc cuprates.
    Marchetti PA; Gambaccini M
    J Phys Condens Matter; 2012 Nov; 24(47):475601. PubMed ID: 23103555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenomenological model of protected behavior in the pseudogap state of underdoped cuprate superconductors.
    Barzykin V; Pines D
    Phys Rev Lett; 2006 Jun; 96(24):247002. PubMed ID: 16907271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermi liquid behavior of the in-plane resistivity in the pseudogap state of YBa2Cu4O8.
    Proust C; Vignolle B; Levallois J; Adachi S; Hussey NE
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13654-13659. PubMed ID: 27856753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composite-fermion theory for pseudogap, Fermi arc, hole pocket, and non-Fermi liquid of underdoped cuprate superconductors.
    Yamaji Y; Imada M
    Phys Rev Lett; 2011 Jan; 106(1):016404. PubMed ID: 21231759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-component energy spectrum of cuprates in the pseudogap phase and its evolution with temperature and at charge ordering.
    Gor'kov LP; Teitel'baum GB
    Sci Rep; 2015 Feb; 5():8524. PubMed ID: 25688011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.
    Chang J; Månsson M; Pailhès S; Claesson T; Lipscombe OJ; Hayden SM; Patthey L; Tjernberg O; Mesot J
    Nat Commun; 2013; 4():2559. PubMed ID: 24096628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermi surface reconstruction in high-T(c) superconductors.
    Taillefer L
    J Phys Condens Matter; 2009 Apr; 21(16):164212. PubMed ID: 21825392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topological Exciton Fermi Surfaces in Two-Component Fractional Quantized Hall Insulators.
    Barkeshli M; Nayak C; Papić Z; Young A; Zaletel M
    Phys Rev Lett; 2018 Jul; 121(2):026603. PubMed ID: 30085706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gapless spin liquids on the three-dimensional hyperkagome lattice of Na4Ir3O8.
    Lawler MJ; Paramekanti A; Kim YB; Balents L
    Phys Rev Lett; 2008 Nov; 101(19):197202. PubMed ID: 19113300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact mapping of the d(x(2)-y(2)) Cooper-pair wavefunction onto the spin fluctuations in cuprates: the Fermi surface as a driver for 'high T(c)' superconductivity.
    McDonald RD; Harrison N; Singleton J
    J Phys Condens Matter; 2009 Jan; 21(1):012201. PubMed ID: 21817202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudogap Fermi-Bose Kondo model.
    Vojta M; Kirćan M
    Phys Rev Lett; 2003 Apr; 90(15):157203. PubMed ID: 12732067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological order, emergent gauge fields, and Fermi surface reconstruction.
    Sachdev S
    Rep Prog Phys; 2019 Jan; 82(1):014001. PubMed ID: 30210062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Holon Wigner Crystal in a Lightly Doped Kagome Quantum Spin Liquid.
    Jiang HC; Devereaux T; Kivelson SA
    Phys Rev Lett; 2017 Aug; 119(6):067002. PubMed ID: 28949592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unconventional exciton evolution from the pseudogap to superconducting phases in cuprates.
    Singh A; Huang HY; Xie JD; Okamoto J; Chen CT; Watanabe T; Fujimori A; Imada M; Huang DJ
    Nat Commun; 2022 Dec; 13(1):7906. PubMed ID: 36550120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials.
    Sachdev S; Metlitski MA; Punk M
    J Phys Condens Matter; 2012 Jul; 24(29):294205. PubMed ID: 22773369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical transmutation in doped quantum dimer models.
    Lamas CA; Ralko A; Cabra DC; Poilblanc D; Pujol P
    Phys Rev Lett; 2012 Jul; 109(1):016403. PubMed ID: 23031119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strongly correlated s-wave superconductivity in the N-type infinite-layer cuprate.
    Chen CT; Seneor P; Yeh NC; Vasquez RP; Bell LD; Jung CU; Kim JY; Park MS; Kim HJ; Lee SI
    Phys Rev Lett; 2002 Jun; 88(22):227002. PubMed ID: 12059447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergent gauge fields and the high-temperature superconductors.
    Sachdev S
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2075):. PubMed ID: 27458260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.