These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 26195772)

  • 21. Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices.
    Langner R; Kellermann T; Boers F; Sturm W; Willmes K; Eickhoff SB
    Cereb Cortex; 2011 Dec; 21(12):2850-62. PubMed ID: 21527785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback.
    Lin PY; Lin SI; Chen JJ
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):78-84. PubMed ID: 21984524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Top-down attention regulates the neural expression of audiovisual integration.
    Morís Fernández L; Visser M; Ventura-Campos N; Ávila C; Soto-Faraco S
    Neuroimage; 2015 Oct; 119():272-85. PubMed ID: 26119022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prior expectations evoke stimulus templates in the primary visual cortex.
    Kok P; Failing MF; de Lange FP
    J Cogn Neurosci; 2014 Jul; 26(7):1546-54. PubMed ID: 24392894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatiotemporal properties of cortical haemodynamic response to auditory stimuli in sleeping infants revealed by multi-channel near-infrared spectroscopy.
    Taga G; Watanabe H; Homae F
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1955):4495-511. PubMed ID: 22006903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing infants' cortical response to speech using near-infrared spectroscopy.
    Bortfeld H; Wruck E; Boas DA
    Neuroimage; 2007 Jan; 34(1):407-15. PubMed ID: 17045812
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced multisensory integration and motor reactivation after active motor learning of audiovisual associations.
    Butler AJ; James TW; James KH
    J Cogn Neurosci; 2011 Nov; 23(11):3515-28. PubMed ID: 21452947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motor activity and imagery modulate the body-selective region in the occipital-temporal area: a near-infrared spectroscopy study.
    Ishizu T; Noguchi A; Ito Y; Ayabe T; Kojima S
    Neurosci Lett; 2009 Nov; 465(1):85-9. PubMed ID: 19733214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active learning of novel sound-producing objects: motor reactivation and enhancement of visuo-motor connectivity.
    Butler AJ; James KH
    J Cogn Neurosci; 2013 Feb; 25(2):203-18. PubMed ID: 22905816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hemispheric Asymmetries in Repetition Enhancement and Suppression Effects in the Newborn Brain.
    Bouchon C; Nazzi T; Gervain J
    PLoS One; 2015; 10(10):e0140160. PubMed ID: 26485434
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent changes in learning audiovisual associations: a single-trial fMRI study.
    Gonzalo D; Shallice T; Dolan R
    Neuroimage; 2000 Mar; 11(3):243-55. PubMed ID: 10694466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auditory cortex activation is modulated by emotion: a functional near-infrared spectroscopy (fNIRS) study.
    Plichta MM; Gerdes AB; Alpers GW; Harnisch W; Brill S; Wieser MJ; Fallgatter AJ
    Neuroimage; 2011 Apr; 55(3):1200-7. PubMed ID: 21236348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human brain plasticity: evidence from sensory deprivation and altered language experience.
    Neville H; Bavelier D
    Prog Brain Res; 2002; 138():177-88. PubMed ID: 12432770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural basis of auditory expectation within temporal cortex.
    Nazimek JM; Hunter MD; Hoskin R; Wilkinson I; Woodruff PW
    Neuropsychologia; 2013 Sep; 51(11):2245-50. PubMed ID: 23933483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Frontotemporal oxyhemoglobin dynamics predict performance accuracy of dance simulation gameplay: temporal characteristics of top-down and bottom-up cortical activities.
    Ono Y; Nomoto Y; Tanaka S; Sato K; Shimada S; Tachibana A; Bronner S; Noah JA
    Neuroimage; 2014 Jan; 85 Pt 1():461-70. PubMed ID: 23707582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamic responses in human multisensory and auditory association cortex to purely visual stimulation.
    Meyer M; Baumann S; Marchina S; Jancke L
    BMC Neurosci; 2007 Feb; 8():14. PubMed ID: 17284307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative comparison of the hemodynamic activation elicited by cardinal and oblique gratings with functional near-infrared spectroscopy.
    Sun M; Huang J; Wang F; An A; Tian F; Liu H; Niu H; Song Y
    Neuroreport; 2013 May; 24(7):354-8. PubMed ID: 23528283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of fNIRS to assess resting state functional connectivity.
    Lu CM; Zhang YJ; Biswal BB; Zang YF; Peng DL; Zhu CZ
    J Neurosci Methods; 2010 Feb; 186(2):242-9. PubMed ID: 19931310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Auditory stimulus repetition effects on cortical hemoglobin oxygenation: a near-infrared spectroscopy investigation.
    Weiss AP; Duff M; Roffman JL; Rauch SL; Strangman GE
    Neuroreport; 2008 Jan; 19(2):161-5. PubMed ID: 18185101
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct cortical hemodynamic mapping of somatotopy of pig nostril sensation by functional near-infrared cortical imaging (fNCI).
    Uga M; Saito T; Sano T; Yokota H; Oguro K; Rizki EE; Mizutani T; Katura T; Dan I; Watanabe E
    Neuroimage; 2014 May; 91():138-45. PubMed ID: 24418508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.