These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26195788)

  • 1. CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition.
    Bae B; Nayak D; Ray A; Mustaev A; Landick R; Darst SA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4178-87. PubMed ID: 26195788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription inhibition by the depsipeptide antibiotic salinamide A.
    Degen D; Feng Y; Zhang Y; Ebright KY; Ebright YW; Gigliotti M; Vahedian-Movahed H; Mandal S; Talaue M; Connell N; Arnold E; Fenical W; Ebright RH
    Elife; 2014 Apr; 3():e02451. PubMed ID: 24843001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new class of bacterial RNA polymerase inhibitor affects nucleotide addition.
    Artsimovitch I; Chu C; Lynch AS; Landick R
    Science; 2003 Oct; 302(5645):650-4. PubMed ID: 14576436
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two distinct pathways of RNA polymerase backtracking determine the requirement for the Trigger Loop during RNA hydrolysis.
    Mosaei H; Zenkin N
    Nucleic Acids Res; 2021 Sep; 49(15):8777-8784. PubMed ID: 34365509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Basis of Transcription Inhibition by CBR Hydroxamidines and CBR Pyrazoles.
    Feng Y; Degen D; Wang X; Gigliotti M; Liu S; Zhang Y; Das D; Michalchuk T; Ebright YW; Talaue M; Connell N; Ebright RH
    Structure; 2015 Aug; 23(8):1470-1481. PubMed ID: 26190576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CBR antimicrobials alter coupling between the bridge helix and the β subunit in RNA polymerase.
    Malinen AM; Nandymazumdar M; Turtola M; Malmi H; Grocholski T; Artsimovitch I; Belogurov GA
    Nat Commun; 2014 Mar; 5():3408. PubMed ID: 24598909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site closure stabilizes the backtracked state of RNA polymerase.
    Turtola M; Mäkinen JJ; Belogurov GA
    Nucleic Acids Res; 2018 Nov; 46(20):10870-10887. PubMed ID: 30256972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RNA polymerase bridge helix YFI motif in catalysis, fidelity and translocation.
    Nedialkov YA; Opron K; Assaf F; Artsimovitch I; Kireeva ML; Kashlev M; Cukier RI; Nudler E; Burton ZF
    Biochim Biophys Acta; 2013 Feb; 1829(2):187-98. PubMed ID: 23202476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tagetitoxin inhibits transcription by stabilizing pre-translocated state of the elongation complex.
    Yuzenkova Y; Roghanian M; Bochkareva A; Zenkin N
    Nucleic Acids Res; 2013 Nov; 41(20):9257-65. PubMed ID: 23935117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridge helix and trigger loop perturbations generate superactive RNA polymerases.
    Tan L; Wiesler S; Trzaska D; Carney HC; Weinzierl RO
    J Biol; 2008 Dec; 7(10):40. PubMed ID: 19055851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bridge helix coordinates movements of modules in RNA polymerase.
    Hein PP; Landick R
    BMC Biol; 2010 Nov; 8():141. PubMed ID: 21114873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of RNA polymerase activity through the trigger loop folding.
    Miropolskaya N; Nikiforov V; Klimasauskas S; Artsimovitch I; Kulbachinskiy A
    Transcription; 2010; 1(2):89-94. PubMed ID: 21326898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for substrate loading in bacterial RNA polymerase.
    Vassylyev DG; Vassylyeva MN; Zhang J; Palangat M; Artsimovitch I; Landick R
    Nature; 2007 Jul; 448(7150):163-8. PubMed ID: 17581591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trigger loop folding determines transcription rate of Escherichia coli's RNA polymerase.
    Mejia YX; Nudler E; Bustamante C
    Proc Natl Acad Sci U S A; 2015 Jan; 112(3):743-8. PubMed ID: 25552559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Allosteric control of catalysis by the F loop of RNA polymerase.
    Miropolskaya N; Artsimovitch I; Klimasauskas S; Nikiforov V; Kulbachinskiy A
    Proc Natl Acad Sci U S A; 2009 Nov; 106(45):18942-7. PubMed ID: 19855007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swing-gate model of nucleotide entry into the RNA polymerase active center.
    Epshtein V; Mustaev A; Markovtsov V; Bereshchenko O; Nikiforov V; Goldfarb A
    Mol Cell; 2002 Sep; 10(3):623-34. PubMed ID: 12408829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase.
    Windgassen TA; Mooney RA; Nayak D; Palangat M; Zhang J; Landick R
    Nucleic Acids Res; 2014 Nov; 42(20):12707-21. PubMed ID: 25336618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of transcriptional pausing in bacteria.
    Weixlbaumer A; Leon K; Landick R; Darst SA
    Cell; 2013 Jan; 152(3):431-41. PubMed ID: 23374340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A movie of the RNA polymerase nucleotide addition cycle.
    Brueckner F; Ortiz J; Cramer P
    Curr Opin Struct Biol; 2009 Jun; 19(3):294-9. PubMed ID: 19481445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Pyrophosphorolysis in the Initiation-to-Elongation Transition by E. coli RNA Polymerase.
    Imashimizu M; Kireeva ML; Lubkowska L; Kashlev M; Shimamoto N
    J Mol Biol; 2019 Jun; 431(14):2528-2542. PubMed ID: 31029704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.