These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26196065)

  • 1. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.
    Plummer CE; Stover ML; Bokatzian SS; Davis JT; Dixon DA; Cassady CJ
    J Phys Chem B; 2015 Jul; 119(30):9661-9. PubMed ID: 26196065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-phase deprotonation of the peptide backbone for tripeptides and their methyl esters with hydrogen and methyl side chains.
    Bokatzian-Johnson SS; Stover ML; Dixon DA; Cassady CJ
    J Phys Chem B; 2012 Dec; 116(51):14844-58. PubMed ID: 23194315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas-Phase Acidities of Phosphorylated Amino Acids.
    Stover ML; Plummer CE; Miller SR; Cassady CJ; Dixon DA
    J Phys Chem B; 2015 Nov; 119(46):14604-21. PubMed ID: 26492552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and computational investigation into the gas-phase acidities of tyrosine and phenylalanine: three structures for deprotonated tyrosine.
    Bokatzian SS; Stover ML; Plummer CE; Dixon DA; Cassady CJ
    J Phys Chem B; 2014 Nov; 118(44):12630-43. PubMed ID: 25299802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and Computational Study of the Gas-Phase Acidities of Acidic Di- and Tripeptides.
    Cui C; McNeill AS; Jackson WC; Raddatz MA; Stover ML; Dixon DA; Cassady CJ
    J Phys Chem B; 2019 Jan; 123(3):606-613. PubMed ID: 30609894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.
    Stover ML; Jackson VE; Matus MH; Adams MA; Cassady CJ; Dixon DA
    J Phys Chem B; 2012 Mar; 116(9):2905-16. PubMed ID: 22277062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).
    Ren J; Tan JP; Harper RT
    J Phys Chem A; 2009 Oct; 113(41):10903-12. PubMed ID: 19754094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio study of hydrogen-bond formation between aliphatic and phenolic hydroxy groups and selected amino acid side chains.
    Nagy PI; Erhardt PW
    J Phys Chem A; 2008 May; 112(18):4342-54. PubMed ID: 18373368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity and gas-phase acidity determinations of small peptide ions consisting of 11 to 14 amino acid residues.
    Carr SR; Cassady CJ
    J Mass Spectrom; 1997 Sep; 32(9):959-67. PubMed ID: 9311149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase acidities of cysteine-polyglycine peptides: the effect of the cysteine position.
    Morishetti KK; Huang Bde S; Yates JM; Ren J
    J Am Soc Mass Spectrom; 2010 Apr; 21(4):603-14. PubMed ID: 20106677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidity, H/D exchange experiments, and computations on cysteine and its conjugate base.
    Tian Z; Pawlow A; Poutsma JC; Kass SR
    J Am Chem Soc; 2007 May; 129(17):5403-7. PubMed ID: 17419624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of gas-phase hydrogen/deuterium exchange and gas-phase structure of protonated phenylalanine, proline, tyrosine and tryptophan.
    Rozman M; Kazazić S; Klasinc L; Srzić D
    Rapid Commun Mass Spectrom; 2003; 17(24):2769-72. PubMed ID: 14673825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and structural elucidation of mechanisms for gas phase H/D exchange of protonated peptides.
    Ziegler BE; McMahon TB
    J Phys Chem A; 2010 Nov; 114(44):11953-63. PubMed ID: 20968311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the prediction of the activity of antioxidants: experimental and theoretical study of the gas-phase acidities of flavonoids.
    Martins HF; Leal JP; Fernandez MT; Lopes VH; Cordeiro MN
    J Am Soc Mass Spectrom; 2004 Jun; 15(6):848-61. PubMed ID: 15144974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical studies of potassium cation interactions with the acidic amino acids and their amide derivatives.
    Heaton AL; Armentrout PB
    J Phys Chem B; 2008 Sep; 112(38):12056-65. PubMed ID: 18729510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational analysis of amino acids and short peptides in hydrated media. VII. Energy landscapes, energetic and geometrical features of L-histidine with protonated and neutral side chains.
    Pflüger F; Hernández B; Ghomi M
    J Phys Chem B; 2010 Jul; 114(27):9072-83. PubMed ID: 20568807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase structure of protonated histidine and histidine methyl ester: combined experimental mass spectrometry and theoretical ab initio study.
    Kovacević B; Rozman M; Klasinc L; Srzić D; Maksić ZB; Yañez M
    J Phys Chem A; 2005 Sep; 109(37):8329-35. PubMed ID: 16834223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of water from the carboxyl group of GlyGlyH+.
    Balta B; Aviyente V; Lifshitz C
    J Am Soc Mass Spectrom; 2003 Oct; 14(10):1192-203. PubMed ID: 14530099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evaluation of the binding energies in hydrogen-bonded amide-thymine and amide-uracil dimers in gas phase.
    Li Y; Jiang XN; Wang CS
    J Comput Chem; 2011 Apr; 32(5):953-66. PubMed ID: 20949514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.