These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 26196094)
1. Insight on how fishing bats discern prey and adjust their mechanic and sensorial features during the attack sequence. Aizpurua O; Alberdi A; Aihartza J; Garin I Sci Rep; 2015 Jul; 5():12392. PubMed ID: 26196094 [TBL] [Abstract][Full Text] [Related]
2. Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey. Aizpurua O; Aihartza J; Alberdi A; Baagøe HJ; Garin I J Exp Biol; 2014 Sep; 217(Pt 18):3318-25. PubMed ID: 25013107 [TBL] [Abstract][Full Text] [Related]
3. Echolocation call structure and intensity in five species of insectivorous bats. Waters DA; Jones G J Exp Biol; 1995 Feb; 198(Pt 2):475-89. PubMed ID: 7699316 [TBL] [Abstract][Full Text] [Related]
4. Echolocation behaviour of Megaderma lyra during typical orientation situations and while hunting aerial prey: a field study. Schmidt S; Yapa W; Grunwald JE J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):403-12. PubMed ID: 20582420 [TBL] [Abstract][Full Text] [Related]
5. How the bat got its buzz. Ratcliffe JM; Elemans CP; Jakobsen L; Surlykke A Biol Lett; 2013 Apr; 9(2):20121031. PubMed ID: 23302868 [TBL] [Abstract][Full Text] [Related]
6. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Geipel I; Jung K; Kalko EK Proc Biol Sci; 2013 Mar; 280(1754):20122830. PubMed ID: 23325775 [TBL] [Abstract][Full Text] [Related]
7. The role of echolocation in the hunting of terrestrial prey--new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra. Schmidt S; Hanke S; Pillat J J Comp Physiol A; 2000 Oct; 186(10):975-88. PubMed ID: 11138799 [TBL] [Abstract][Full Text] [Related]
8. Fishing Technique of Long-Fingered Bats Was Developed from a Primary Reaction to Disappearing Target Stimuli. Aizpurua O; Alberdi A; Aihartza J; Garin I PLoS One; 2016; 11(12):e0167164. PubMed ID: 27973529 [TBL] [Abstract][Full Text] [Related]
9. Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. Jones G; Webb PI; Sedgeley JA; O'Donnell CF J Exp Biol; 2003 Dec; 206(Pt 23):4209-16. PubMed ID: 14581591 [TBL] [Abstract][Full Text] [Related]
10. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight. Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269 [TBL] [Abstract][Full Text] [Related]
11. Sensory biology: listening in the dark for echoes from silent and stationary prey. Jones G Curr Biol; 2013 Mar; 23(6):R249-51. PubMed ID: 23518059 [TBL] [Abstract][Full Text] [Related]
12. The benefits of insect-swarm hunting to echolocating bats, and its influence on the evolution of bat echolocation signals. Boonman A; Fenton B; Yovel Y PLoS Comput Biol; 2019 Dec; 15(12):e1006873. PubMed ID: 31830029 [TBL] [Abstract][Full Text] [Related]
13. Variability of the approach phase of landing echolocating Greater Mouse-eared bats. Melcón ML; Schnitzler HU; Denzinger A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jan; 195(1):69-77. PubMed ID: 18998148 [TBL] [Abstract][Full Text] [Related]
14. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept. Geberl C; Brinkløv S; Wiegrebe L; Surlykke A Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538 [TBL] [Abstract][Full Text] [Related]
15. Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata. Ratcliffe JM; Jakobsen L; Kalko EK; Surlykke A J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):413-23. PubMed ID: 21327333 [TBL] [Abstract][Full Text] [Related]
16. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit. Vanderelst D; Peremans H J Theor Biol; 2018 Nov; 456():305-314. PubMed ID: 30102889 [TBL] [Abstract][Full Text] [Related]
17. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging. Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936 [TBL] [Abstract][Full Text] [Related]
18. Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats. Nakano R; Mason AC PLoS One; 2018; 13(8):e0202679. PubMed ID: 30125318 [TBL] [Abstract][Full Text] [Related]
19. Adaptive echolocation sounds of insectivorous bats, Pipistrellus abramus, during foraging flights in the field. Hiryu S; Hagino T; Fujioka E; Riquimaroux H; Watanabe Y J Acoust Soc Am; 2008 Aug; 124(2):EL51-6. PubMed ID: 18681502 [TBL] [Abstract][Full Text] [Related]
20. No evidence for spectral jamming avoidance in echolocation behavior of foraging pipistrelle bats. Götze S; Koblitz JC; Denzinger A; Schnitzler HU Sci Rep; 2016 Aug; 6():30978. PubMed ID: 27502900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]