These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26196229)

  • 1. Dual partitioning and attachment effects of rhamnolipid on pyrene biodegradation under bioavailability restrictions.
    Congiu E; Parsons JR; Ortega-Calvo JJ
    Environ Pollut; 2015 Oct; 205():378-84. PubMed ID: 26196229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of rhamnolipid biosurfactant and Brij-35 synthetic surfactant on
    Wolf DC; Gan J
    Environ Pollut; 2018 Dec; 243(Pt B):1846-1853. PubMed ID: 30408872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of desorption kinetics in the rhamnolipid-enhanced biodegradation of polycyclic aromatic hydrocarbons.
    Congiu E; Ortega-Calvo JJ
    Environ Sci Technol; 2014 Sep; 48(18):10869-77. PubMed ID: 25121829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of low oxygen tensions and sorption to sediment black carbon on biodegradation of pyrene.
    Ortega-Calvo JJ; Gschwend PM
    Appl Environ Microbiol; 2010 Jul; 76(13):4430-7. PubMed ID: 20472733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of humic acids on biodegradation of polycyclic aromatic hydrocarbons depends on the exposure regime.
    Tejeda-Agredano MC; Mayer P; Ortega-Calvo JJ
    Environ Pollut; 2014 Jan; 184():435-42. PubMed ID: 24121418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced kinetics of solid-phase microextraction and biodegradation of polycyclic aromatic hydrocarbons in the presence of dissolved organic matter.
    Haftka JJ; Parsons JR; Govers HA; Ortega-Calvo JJ
    Environ Toxicol Chem; 2008 Jul; 27(7):1526-32. PubMed ID: 18260699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenanthrene degradation in soils co-inoculated with phenanthrene-degrading and biosurfactant-producing bacteria.
    Dean SM; Jin Y; Cha DK; Wilson SV; Radosevich M
    J Environ Qual; 2001; 30(4):1126-33. PubMed ID: 11476488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosurfactant- and biodegradation-enhanced partitioning of polycyclic aromatic hydrocarbons from nonaqueous-phase liquids.
    Garcia-Junco M; Gomez-Lahoz C; Niqui-Arroyo JL; Ortega-Calvo JJ
    Environ Sci Technol; 2003 Jul; 37(13):2988-96. PubMed ID: 12875405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biodegradation of PAHs in historically contaminated soil by M. gilvum inoculated biochar.
    Xiong B; Zhang Y; Hou Y; Arp HPH; Reid BJ; Cai C
    Chemosphere; 2017 Sep; 182():316-324. PubMed ID: 28501571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of rhamnolipid biosurfactant on solubilization of polycyclic aromatic hydrocarbons.
    Li S; Pi Y; Bao M; Zhang C; Zhao D; Li Y; Sun P; Lu J
    Mar Pollut Bull; 2015 Dec; 101(1):219-225. PubMed ID: 26494247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhamnolipid-Enhanced ZVI-Activated Sodium Persulfate Remediation of Pyrene-Contaminated Soil.
    Wang W; Wang X; Zhang H; Shi Q; Liu H
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil.
    Cao L; Wang Q; Zhang J; Li C; Yan X; Lou X; Xia Y; Hong Q; Li S
    World J Microbiol Biotechnol; 2012 Sep; 28(9):2783-90. PubMed ID: 22806718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of biosurfactant on the diesel oil remediation in soil-water system.
    Li YY; Zheng XL; Li B
    J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids.
    Bordas F; Lafrance P; Villemur R
    Environ Pollut; 2005 Nov; 138(1):69-76. PubMed ID: 15905007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Aging of spiked pyrene in two paddy soils and their particle-size fractions after soil incubation and changes in extractability and bio-availability to earthworm].
    Li JH; Pan GX
    Huan Jing Ke Xue; 2005 Nov; 26(6):131-6. PubMed ID: 16447446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of mixed polycyclic aromatic hydrocarbons through a rhamnolipid biosurfactant.
    Yu H; Huang G; Wei J; An C
    J Environ Qual; 2011; 40(2):477-83. PubMed ID: 21520755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of compost amendment on pyrene availability from artificially spiked soil to two subspecies of Cucurbita pepo.
    Kobayashi T; Navarro RR; Tatsumi K; Iimura Y
    Sci Total Environ; 2008 Oct; 404(1):1-9. PubMed ID: 18632137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrene biodegradatin in aqueous solutions and soil slurries by Mycobacterium PYR-1 and enriched consortium.
    Ramirez N; Cutright T; Ju LK
    Chemosphere; 2001 Aug; 44(5):1079-86. PubMed ID: 11513394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradability of aged pyrene and phenanthrene in a natural soil.
    Hwang S; Cutright TJ
    Chemosphere; 2002 Jun; 47(9):891-9. PubMed ID: 12108695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gene expression study of the activities of aromatic ring-cleavage dioxygenases in Mycobacterium gilvum PYR-GCK to changes in salinity and pH during pyrene degradation.
    Badejo AC; Badejo AO; Shin KH; Chai YG
    PLoS One; 2013; 8(2):e58066. PubMed ID: 23469141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.