BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 26196420)

  • 1. Experiment and simulation study on alkalis transfer characteristic during direct combustion utilization of bagasse.
    Liao Y; Cao Y; Chen T; Ma X
    Bioresour Technol; 2015 Oct; 194():196-204. PubMed ID: 26196420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Retention of selenium volatility using lime in coal combustion].
    Zhang J; Ren D; Zhong Q; Xu F; Zhang Y; Yin J
    Huan Jing Ke Xue; 2001 May; 22(3):100-3. PubMed ID: 11507891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control methods for mitigating biomass ash-related problems in fluidized beds.
    Vamvuka D; Zografos D; Alevizos G
    Bioresour Technol; 2008 Jun; 99(9):3534-44. PubMed ID: 17826986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of kaolin on the combustion of demolition wood under well-controlled conditions.
    Khalil RA; Todorovic D; Skreiberg O; Becidan M; Backman R; Goile F; Skreiberg A; Sørum L
    Waste Manag Res; 2012 Jul; 30(7):672-80. PubMed ID: 22081382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ash deposition behavior of a high-alkali coal in circulating fluidized bed combustion at different bed temperatures and the effect of kaolin.
    Liu Y; Cheng L; Ji J; Wang Q; Fang M
    RSC Adv; 2018 Sep; 8(59):33817-33827. PubMed ID: 35548841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw.
    Liu H; Feng Y; Wu S; Liu D
    Bioresour Technol; 2009 Dec; 100(24):6505-13. PubMed ID: 19664917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and numerical techniques to evaluate coal/biomass fly ash blend characteristics and potentials.
    Khalid U; Khoja AH; Daood SS; Khan WUH; Din IU; Al-Anazi A; Petrillo A
    Sci Total Environ; 2024 Feb; 912():169218. PubMed ID: 38092215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water.
    Sun Z; Takahashi F; Odaka Y; Fukushi K; Oshima Y; Yamamoto K
    Chemosphere; 2007 Jan; 66(1):151-7. PubMed ID: 17005235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compare study cellulose/Mn₃O₄ composites using four types of alkalis by sonochemistry method.
    Fu LH; Li SM; Bian J; Ma MG; Long XL; Zhang XM; Liu SJ
    Carbohydr Polym; 2015 Jan; 115():373-8. PubMed ID: 25439907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor.
    Duan F; Chyang CS; Zhang LH; Yin SF
    Bioresour Technol; 2015 May; 183():195-202. PubMed ID: 25742751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of gaseous energy recovery from sugarcane bagasse by dark fermentation followed by biomethanation process.
    Kumari S; Das D
    Bioresour Technol; 2015 Oct; 194():354-63. PubMed ID: 26210150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olive bagasse (Olea europea L.) pyrolysis.
    Sensöz S; Demiral I; Ferdi Gerçel H
    Bioresour Technol; 2006 Feb; 97(3):429-36. PubMed ID: 16216727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.
    Chen J; Jiao F; Zhang L; Yao H; Ninomiya Y
    Environ Sci Technol; 2012 Mar; 46(6):3567-73. PubMed ID: 22397359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laboratory and pilot scale pretreatment of sugarcane bagasse by acidified aqueous glycerol solutions.
    Zhang Z; Wong HH; Albertson PL; Doherty WO; O'Hara IM
    Bioresour Technol; 2013 Jun; 138():14-21. PubMed ID: 23612157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lime pretreatment of sugarcane bagasse for bioethanol production.
    Rabelo SC; Maciel Filho R; Costa AC
    Appl Biochem Biotechnol; 2009 May; 153(1-3):139-50. PubMed ID: 19050835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials.
    Souza AE; Teixeira SR; Santos GT; Costa FB; Longo E
    J Environ Manage; 2011 Oct; 92(10):2774-80. PubMed ID: 21733619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased digestibility of bagasses by pretreatment with alkalis and steam explosion.
    Playne MJ
    Biotechnol Bioeng; 1984 May; 26(5):426-33. PubMed ID: 18553336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of ash deposition dynamic process in an industrial biomass CFB boiler burning high alkali and chlorine fuel.
    Zhang H; Yu C; Luo Z
    RSC Adv; 2020 Jun; 10(36):21420-21426. PubMed ID: 35518761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combustion of Biosolids in a Bubbling Fluidized Bed, Part 1: Main Ash-Forming Elements and Ash Distribution with a Focus on Phosphorus.
    Skoglund N; Grimm A; Ohman M; Boström D
    Energy Fuels; 2014 Feb; 28(2):1183-1190. PubMed ID: 24678140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali-based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol.
    Krishnan C; Sousa Lda C; Jin M; Chang L; Dale BE; Balan V
    Biotechnol Bioeng; 2010 Oct; 107(3):441-50. PubMed ID: 20521302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.