These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
460 related articles for article (PubMed ID: 26196533)
1. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics. Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533 [TBL] [Abstract][Full Text] [Related]
2. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis. Fitzgerald KA; Guo J; Raftery RM; Castaño IM; Curtin CM; Gooding M; Darcy R; O' Brien FJ; O' Driscoll CM Int J Pharm; 2016 Sep; 511(2):1058-69. PubMed ID: 27492023 [TBL] [Abstract][Full Text] [Related]
3. Formulation and Evaluation of Anisamide-Targeted Amphiphilic Cyclodextrin Nanoparticles To Promote Therapeutic Gene Silencing in a 3D Prostate Cancer Bone Metastases Model. Evans JC; Malhotra M; Fitzgerald KA; Guo J; Cronin MF; Curtin CM; O'Brien FJ; Darcy R; O'Driscoll CM Mol Pharm; 2017 Jan; 14(1):42-52. PubMed ID: 28043128 [TBL] [Abstract][Full Text] [Related]
4. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Curtin C; Nolan JC; Conlon R; Deneweth L; Gallagher C; Tan YJ; Cavanagh BL; Asraf AZ; Harvey H; Miller-Delaney S; Shohet J; Bray I; O'Brien FJ; Stallings RL; Piskareva O Acta Biomater; 2018 Apr; 70():84-97. PubMed ID: 29447961 [TBL] [Abstract][Full Text] [Related]
5. Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold. Cruz-Neves S; Ribeiro N; Graça I; Jerónimo C; Sousa SR; Monteiro FJ J Biomed Mater Res A; 2017 Jul; 105(7):2035-2046. PubMed ID: 28371333 [TBL] [Abstract][Full Text] [Related]
6. Prostate cancer-associated membrane type 1-matrix metalloproteinase: a pivotal role in bone response and intraosseous tumor growth. Bonfil RD; Dong Z; Trindade Filho JC; Sabbota A; Osenkowski P; Nabha S; Yamamoto H; Chinni SR; Zhao H; Mobashery S; Vessella RL; Fridman R; Cher ML Am J Pathol; 2007 Jun; 170(6):2100-11. PubMed ID: 17525276 [TBL] [Abstract][Full Text] [Related]
7. Bone microenvironment modulates expression and activity of cathepsin B in prostate cancer. Podgorski I; Linebaugh BE; Sameni M; Jedeszko C; Bhagat S; Cher ML; Sloane BF Neoplasia; 2005 Mar; 7(3):207-23. PubMed ID: 15799821 [TBL] [Abstract][Full Text] [Related]
8. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds. Brennan MÁ; Renaud A; Gamblin AL; D'Arros C; Nedellec S; Trichet V; Layrolle P Biomed Mater; 2015 Aug; 10(4):045019. PubMed ID: 26238732 [TBL] [Abstract][Full Text] [Related]
9. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. Chung LW; Baseman A; Assikis V; Zhau HE J Urol; 2005 Jan; 173(1):10-20. PubMed ID: 15592017 [TBL] [Abstract][Full Text] [Related]
10. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis. Sieh S; Taubenberger AV; Lehman ML; Clements JA; Nelson CC; Hutmacher DW Bone; 2014 Jun; 63():121-31. PubMed ID: 24530694 [TBL] [Abstract][Full Text] [Related]
11. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623 [TBL] [Abstract][Full Text] [Related]
12. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Takeshita F; Minakuchi Y; Nagahara S; Honma K; Sasaki H; Hirai K; Teratani T; Namatame N; Yamamoto Y; Hanai K; Kato T; Sano A; Ochiya T Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12177-82. PubMed ID: 16091473 [TBL] [Abstract][Full Text] [Related]
13. Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Bisanz K; Yu J; Edlund M; Spohn B; Hung MC; Chung LW; Hsieh CL Mol Ther; 2005 Oct; 12(4):634-43. PubMed ID: 16039164 [TBL] [Abstract][Full Text] [Related]
14. Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Hall CL; Dai J; van Golen KL; Keller ET; Long MW Cancer Res; 2006 Sep; 66(17):8648-54. PubMed ID: 16951179 [TBL] [Abstract][Full Text] [Related]
15. [Role and action mechanisms of FZD5 in prostate cancer bone metastasis in mice]. Zhang X; Mo QW Zhonghua Nan Ke Xue; 2016 Feb; 22(2):128-32. PubMed ID: 26939396 [TBL] [Abstract][Full Text] [Related]
16. Target specific delivery of anticancer drug in silk fibroin based 3D distribution model of bone-breast cancer cells. Subia B; Dey T; Sharma S; Kundu SC ACS Appl Mater Interfaces; 2015 Feb; 7(4):2269-79. PubMed ID: 25557227 [TBL] [Abstract][Full Text] [Related]
17. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. Loberg RD; Logothetis CJ; Keller ET; Pienta KJ J Clin Oncol; 2005 Nov; 23(32):8232-41. PubMed ID: 16278478 [TBL] [Abstract][Full Text] [Related]
18. Heralding a new paradigm in 3D tumor modeling. Fong EL; Harrington DA; Farach-Carson MC; Yu H Biomaterials; 2016 Nov; 108():197-213. PubMed ID: 27639438 [TBL] [Abstract][Full Text] [Related]
19. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Matsubara S; Wada Y; Gardner TA; Egawa M; Park MS; Hsieh CL; Zhau HE; Kao C; Kamidono S; Gillenwater JY; Chung LW Cancer Res; 2001 Aug; 61(16):6012-9. PubMed ID: 11507044 [TBL] [Abstract][Full Text] [Related]
20. Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research. Bock N Methods Mol Biol; 2019; 2054():23-57. PubMed ID: 31482446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]