These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 26196610)

  • 1. Variational Matrix Product Operators for the Steady State of Dissipative Quantum Systems.
    Cui J; Cirac JI; Bañuls MC
    Phys Rev Lett; 2015 Jun; 114(22):220601. PubMed ID: 26196610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact matrix product solution for the boundary-driven Lindblad XXZ chain.
    Karevski D; Popkov V; Schütz GM
    Phys Rev Lett; 2013 Jan; 110(4):047201. PubMed ID: 25166197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems.
    Nagy A; Savona V
    Phys Rev Lett; 2019 Jun; 122(25):250501. PubMed ID: 31347886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient matrix product operator representation of the quantum chemical Hamiltonian.
    Keller S; Dolfi M; Troyer M; Reiher M
    J Chem Phys; 2015 Dec; 143(24):244118. PubMed ID: 26723662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solvable quantum nonequilibrium model exhibiting a phase transition and a matrix product representation.
    Znidarič M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011108. PubMed ID: 21405662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution.
    Uranga-Piña L; Tremblay JC
    J Chem Phys; 2014 Aug; 141(7):074703. PubMed ID: 25149802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix product density operators: simulation of finite-temperature and dissipative systems.
    Verstraete F; García-Ripoll JJ; Cirac JI
    Phys Rev Lett; 2004 Nov; 93(20):207204. PubMed ID: 15600964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems.
    Vicentini F; Biella A; Regnault N; Ciuti C
    Phys Rev Lett; 2019 Jun; 122(25):250503. PubMed ID: 31347877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variational Quantum Simulation of Lindblad Dynamics via Quantum State Diffusion.
    Luo J; Lin K; Gao X
    J Phys Chem Lett; 2024 Apr; 15(13):3516-3522. PubMed ID: 38517759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lindblad Master Equations for Quantum Systems Coupled to Dissipative Bosonic Modes.
    Jäger SB; Schmit T; Morigi G; Holland MJ; Betzholz R
    Phys Rev Lett; 2022 Aug; 129(6):063601. PubMed ID: 36018669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-Dependent Variational Principle for Open Quantum Systems with Artificial Neural Networks.
    Reh M; Schmitt M; Gärttner M
    Phys Rev Lett; 2021 Dec; 127(23):230501. PubMed ID: 34936784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution.
    Gangat AA; I T; Kao YJ
    Phys Rev Lett; 2017 Jul; 119(1):010501. PubMed ID: 28731760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.
    Li Z; Chan GK
    J Chem Theory Comput; 2017 Jun; 13(6):2681-2695. PubMed ID: 28467847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational principle for steady states of dissipative quantum many-body systems.
    Weimer H
    Phys Rev Lett; 2015 Jan; 114(4):040402. PubMed ID: 25679882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum neural network approach to Markovian dissipative dynamics of many-body open quantum systems.
    Long C; Cao L; Ge L; Li QX; Yan Y; Xu RX; Wang Y; Zheng X
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39171705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics.
    Hartmann MJ; Carleo G
    Phys Rev Lett; 2019 Jun; 122(25):250502. PubMed ID: 31347862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm.
    Ganahl M; Rincón J; Vidal G
    Phys Rev Lett; 2017 Jun; 118(22):220402. PubMed ID: 28621974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact Nonequilibrium Steady State of Open XXZ/XYZ Spin-1/2 Chain with Dirichlet Boundary Conditions.
    Popkov V; Prosen T; Zadnik L
    Phys Rev Lett; 2020 Apr; 124(16):160403. PubMed ID: 32383905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the Liouvillian Gap with Artificial Neural Networks.
    Yuan D; Wang HR; Wang Z; Deng DL
    Phys Rev Lett; 2021 Apr; 126(16):160401. PubMed ID: 33961454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corner-Space Renormalization Method for Driven-Dissipative Two-Dimensional Correlated Systems.
    Finazzi S; Le Boité A; Storme F; Baksic A; Ciuti C
    Phys Rev Lett; 2015 Aug; 115(8):080604. PubMed ID: 26340174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.