These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 26196619)
1. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition. Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619 [TBL] [Abstract][Full Text] [Related]
2. Micromagic clock: microwave clock based on atoms in an engineered optical lattice. Beloy K; Derevianko A; Dzuba VA; Flambaum VV Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262 [TBL] [Abstract][Full Text] [Related]
3. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition. Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514 [TBL] [Abstract][Full Text] [Related]
4. Measurements of experimental transition probabilities of 3p Asghar H; Piracha NK; Ali R; Baig MA Appl Opt; 2020 May; 59(14):4240-4246. PubMed ID: 32400397 [TBL] [Abstract][Full Text] [Related]
5. [The calculation of transitions 4s(2)4p-4s4p(2), 4s(2)4p-4s(2)5s, 4s(2)4p-4s(2)4d, 4s4p(2)-4p(3) and 4p(3)-4s(2)5s energy levels, wavelengths and oscillator strengthes in Ga-like ions from Z X-Rh XV]. Cai L; Li X Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):273-8. PubMed ID: 15810267 [TBL] [Abstract][Full Text] [Related]
6. Characterisation and feasibility study for superradiant lasing in Gogyan A; Kazakov G; Bober M; Zawada M Opt Express; 2020 Mar; 28(5):6881-6892. PubMed ID: 32225926 [TBL] [Abstract][Full Text] [Related]
7. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice. Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176 [TBL] [Abstract][Full Text] [Related]
8. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms. Derevianko A Phys Rev Lett; 2010 Jul; 105(3):033002. PubMed ID: 20867762 [TBL] [Abstract][Full Text] [Related]
9. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength. Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620 [TBL] [Abstract][Full Text] [Related]
10. Multi-reference ab initio calculations of Hg spectral data and analysis of magic and zero-magic wavelengths. Gogyan A; Tecmer P; Zawada M Opt Express; 2021 Mar; 29(6):8654-8665. PubMed ID: 33820308 [TBL] [Abstract][Full Text] [Related]
11. Measurement of a wavelength of light for which the energy shift for an atom vanishes. Holmgren WF; Trubko R; Hromada I; Cronin AD Phys Rev Lett; 2012 Dec; 109(24):243004. PubMed ID: 23368315 [TBL] [Abstract][Full Text] [Related]
12. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice. Takamoto M; Katori H Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233 [TBL] [Abstract][Full Text] [Related]