These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26196619)

  • 1. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.
    Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL
    Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of experimental transition probabilities of 3p
    Asghar H; Piracha NK; Ali R; Baig MA
    Appl Opt; 2020 May; 59(14):4240-4246. PubMed ID: 32400397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The calculation of transitions 4s(2)4p-4s4p(2), 4s(2)4p-4s(2)5s, 4s(2)4p-4s(2)4d, 4s4p(2)-4p(3) and 4p(3)-4s(2)5s energy levels, wavelengths and oscillator strengthes in Ga-like ions from Z X-Rh XV].
    Cai L; Li X
    Guang Pu Xue Yu Guang Pu Fen Xi; 1998 Jun; 18(3):273-8. PubMed ID: 15810267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation and feasibility study for superradiant lasing in
    Gogyan A; Kazakov G; Bober M; Zawada M
    Opt Express; 2020 Mar; 28(5):6881-6892. PubMed ID: 32225926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms.
    Derevianko A
    Phys Rev Lett; 2010 Jul; 105(3):033002. PubMed ID: 20867762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-reference ab initio calculations of Hg spectral data and analysis of magic and zero-magic wavelengths.
    Gogyan A; Tecmer P; Zawada M
    Opt Express; 2021 Mar; 29(6):8654-8665. PubMed ID: 33820308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of a wavelength of light for which the energy shift for an atom vanishes.
    Holmgren WF; Trubko R; Hromada I; Cronin AD
    Phys Rev Lett; 2012 Dec; 109(24):243004. PubMed ID: 23368315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy of the 1S0-3P0 clock transition of 87Sr in an optical lattice.
    Takamoto M; Katori H
    Phys Rev Lett; 2003 Nov; 91(22):223001. PubMed ID: 14683233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2000-Times Repeated Imaging of Strontium Atoms in Clock-Magic Tweezer Arrays.
    Covey JP; Madjarov IS; Cooper A; Endres M
    Phys Rev Lett; 2019 May; 122(17):173201. PubMed ID: 31107094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magic frequencies for cesium primary-frequency standard.
    Flambaum VV; Dzuba VA; Derevianko A
    Phys Rev Lett; 2008 Nov; 101(22):220801. PubMed ID: 19113470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precision measurement of transition matrix elements via light shift cancellation.
    Herold CD; Vaidya VD; Li X; Rolston SL; Porto JV; Safronova MS
    Phys Rev Lett; 2012 Dec; 109(24):243003. PubMed ID: 23368314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new trapped ion atomic clock based on 201Hg+.
    Burt EA; Taghavi-Larigani S; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):629-35. PubMed ID: 20211781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pump wavelength tuning of a near-infrared optical parametric oscillator.
    Jani MG; Powell RC; Jassemnejad B; Stolzenberger R
    Appl Opt; 1992 Apr; 31(12):1998-2000. PubMed ID: 20720849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.