These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26196619)

  • 21. An optical clock based on a single trapped 199Hg+ ion.
    Diddams SA; Udem T; Bergquist JC; Curtis EA; Drullinger RE; Hollberg L; Itano WM; Lee WD; Oates CW; Vogel KR; Wineland DJ
    Science; 2001 Aug; 293(5531):825-8. PubMed ID: 11452082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Narrow-line Cooling and Determination of the Magic Wavelength of Cd.
    Yamaguchi A; Safronova MS; Gibble K; Katori H
    Phys Rev Lett; 2019 Sep; 123(11):113201. PubMed ID: 31573273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Precision measurement and compensation of optical stark shifts for an ion-trap quantum processor.
    Häffner H; Gulde S; Riebe M; Lancaster G; Becher C; Eschner J; Schmidt-Kaler F; Blatt R
    Phys Rev Lett; 2003 Apr; 90(14):143602. PubMed ID: 12731916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of magic-wavelength optical dipole trap by using the laser-induced fluorescence spectra of trapped single cesium atoms.
    Liu B; Jin G; Sun R; He J; Wang J
    Opt Express; 2017 Jul; 25(14):15861-15867. PubMed ID: 28789098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute frequency measurement of the 40Ca+ 4s(2)S_(1/2)-3d(2)D_(5/2) clock transition.
    Chwalla M; Benhelm J; Kim K; Kirchmair G; Monz T; Riebe M; Schindler P; Villar AS; Hänsel W; Roos CF; Blatt R; Abgrall M; Santarelli G; Rovera GD; Laurent P
    Phys Rev Lett; 2009 Jan; 102(2):023002. PubMed ID: 19257267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Triply Magic Conditions for Microwave Transition of Optically Trapped Alkali-Metal Atoms.
    Li G; Tian Y; Wu W; Li S; Li X; Liu Y; Zhang P; Zhang T
    Phys Rev Lett; 2019 Dec; 123(25):253602. PubMed ID: 31922798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The energy levels and oscillator strengths for transitions 3d(10)4s-3d94s4p in ions from Cu I -As V].
    Mu Z; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Aug; 19(4):518-20. PubMed ID: 15818943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions.
    Carr AW; Saffman M
    Phys Rev Lett; 2016 Oct; 117(15):150801. PubMed ID: 27768352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic study of the 87Srclock transition in an optical lattice.
    Ludlow AD; Boyd MM; Zelevinsky T; Foreman SM; Blatt S; Notcutt M; Ido T; Ye J
    Phys Rev Lett; 2006 Jan; 96(3):033003. PubMed ID: 16486696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperpolarizability effects in a Sr optical lattice clock.
    Brusch A; Le Targat R; Baillard X; Fouché M; Lemonde P
    Phys Rev Lett; 2006 Mar; 96(10):103003. PubMed ID: 16605730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency comparison of two high-accuracy Al+ optical clocks.
    Chou CW; Hume DB; Koelemeij JC; Wineland DJ; Rosenband T
    Phys Rev Lett; 2010 Feb; 104(7):070802. PubMed ID: 20366869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts.
    Golovizin AA; Tregubov DO; Fedorova ES; Mishin DA; Provorchenko DI; Khabarova KY; Sorokin VN; Kolachevsky NN
    Nat Commun; 2021 Aug; 12(1):5171. PubMed ID: 34453046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Precision Ramsey-Comb Spectroscopy at Deep Ultraviolet Wavelengths.
    Altmann RK; Galtier S; Dreissen LS; Eikema KS
    Phys Rev Lett; 2016 Oct; 117(17):173201. PubMed ID: 27824468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement.
    Matsubara K; Hachisu H; Li Y; Nagano S; Locke C; Nogami A; Kajita M; Hayasaka K; Ido T; Hosokawa M
    Opt Express; 2012 Sep; 20(20):22034-41. PubMed ID: 23037353
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-accuracy optical clock based on the octupole transition in 171Yb+.
    Huntemann N; Okhapkin M; Lipphardt B; Weyers S; Tamm C; Peik E
    Phys Rev Lett; 2012 Mar; 108(9):090801. PubMed ID: 22463621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.