These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 26196636)
1. Wess-Zumino-Witten Terms in Graphene Landau Levels. Lee J; Sachdev S Phys Rev Lett; 2015 Jun; 114(22):226801. PubMed ID: 26196636 [TBL] [Abstract][Full Text] [Related]
2. Superconductivity, correlated insulators, and Wess-Zumino-Witten terms in twisted bilayer graphene. Christos M; Sachdev S; Scheurer MS Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29543-29554. PubMed ID: 33168719 [TBL] [Abstract][Full Text] [Related]
3. Many-body spin Berry phases emerging from the pi-flux state: competition between antiferromagnetism and the valence-bond-solid state. Tanaka A; Hu X Phys Rev Lett; 2005 Jul; 95(3):036402. PubMed ID: 16090760 [TBL] [Abstract][Full Text] [Related]
4. Phases of the (2+1) Dimensional SO(5) Nonlinear Sigma Model with Topological Term. Wang Z; Zaletel MP; Mong RSK; Assaad FF Phys Rev Lett; 2021 Jan; 126(4):045701. PubMed ID: 33576684 [TBL] [Abstract][Full Text] [Related]
5. Symmetry Protection of Critical Phases and a Global Anomaly in 1+1 Dimensions. Furuya SC; Oshikawa M Phys Rev Lett; 2017 Jan; 118(2):021601. PubMed ID: 28128624 [TBL] [Abstract][Full Text] [Related]
6. Are antiferromagnetic spin chains representations of the higher Wess-Zumino-Witten models? Ziman T; Schulz HJ Phys Rev Lett; 1987 Jul; 59(1):140-143. PubMed ID: 10035123 [No Abstract] [Full Text] [Related]
9. Relation between the chiral-spin-liquid state and the chiral SU(2) Wess-Zumino-Witten model. Balatsky AV Phys Rev B Condens Matter; 1991 Jan; 43(1):1257-1259. PubMed ID: 9996341 [No Abstract] [Full Text] [Related]
10. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory. Chung Sw; Tye S Phys Rev D Part Fields; 1993 May; 47(10):4546-4566. PubMed ID: 10015454 [No Abstract] [Full Text] [Related]
11. Stochastic Loewner evolution for conformal field theories with lie group symmetries. Bettelheim E; Gruzberg IA; Ludwig AW; Wiegmann P Phys Rev Lett; 2005 Dec; 95(25):251601. PubMed ID: 16384446 [TBL] [Abstract][Full Text] [Related]
12. Topological conformal field theories, gauged Wess-Zumino-Witten models, and target-space duality. Hu HL Phys Rev D Part Fields; 1992 Aug; 46(4):1761-1767. PubMed ID: 10015086 [No Abstract] [Full Text] [Related]
13. Realizing All so(N)_{1} Quantum Criticalities in Symmetry Protected Cluster Models. Lahtinen V; Ardonne E Phys Rev Lett; 2015 Dec; 115(23):237203. PubMed ID: 26684140 [TBL] [Abstract][Full Text] [Related]
14. Multifractality at the quantum Hall transition: beyond the parabolic paradigm. Evers F; Mildenberger A; Mirlin AD Phys Rev Lett; 2008 Sep; 101(11):116803. PubMed ID: 18851310 [TBL] [Abstract][Full Text] [Related]
15. Generalized Moment Method for Gap Estimation and Quantum Monte Carlo Level Spectroscopy. Suwa H; Todo S Phys Rev Lett; 2015 Aug; 115(8):080601. PubMed ID: 26340171 [TBL] [Abstract][Full Text] [Related]
16. N=1/2 Wess-Zumino model is renormalizable. Britto R; Feng B Phys Rev Lett; 2003 Nov; 91(20):201601. PubMed ID: 14683351 [TBL] [Abstract][Full Text] [Related]
17. Symmetry breaking in the zero-energy Landau level in bilayer graphene. Zhao Y; Cadden-Zimansky P; Jiang Z; Kim P Phys Rev Lett; 2010 Feb; 104(6):066801. PubMed ID: 20366844 [TBL] [Abstract][Full Text] [Related]
18. Wess-Zumino-Witten model based on a nonsemisimple group. Nappi CR; Witten E Phys Rev Lett; 1993 Dec; 71(23):3751-3753. PubMed ID: 10055064 [No Abstract] [Full Text] [Related]
19. Anomaly Matching and Symmetry-Protected Critical Phases in SU(N) Spin Systems in 1+1 Dimensions. Yao Y; Hsieh CT; Oshikawa M Phys Rev Lett; 2019 Nov; 123(18):180201. PubMed ID: 31763914 [TBL] [Abstract][Full Text] [Related]
20. Improved SU(2)k Wess-Zumino-Witten model. Kikuchi Y; Ishizuka W Phys Rev D Part Fields; 1992 Jun; 45(12):4569-4580. PubMed ID: 10014368 [No Abstract] [Full Text] [Related] [Next] [New Search]