These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 26196801)

  • 1. Coherent Generation of Nonclassical Light on Chip via Detuned Photon Blockade.
    Müller K; Rundquist A; Fischer KA; Sarmiento T; Lagoudakis KG; Kelaita YA; Sánchez Muñoz C; del Valle E; Laussy FP; Vučković J
    Phys Rev Lett; 2015 Jun; 114(23):233601. PubMed ID: 26196801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical control of three-photon spectra and time asymmetry in a strongly coupled cavity polariton system.
    Zhang X; Li R; Wu H
    Sci Rep; 2016 Mar; 6():22560. PubMed ID: 26936334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide.
    Arcari M; Söllner I; Javadi A; Lindskov Hansen S; Mahmoodian S; Liu J; Thyrrestrup H; Lee EH; Song JD; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Aug; 113(9):093603. PubMed ID: 25215983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Spin-Photon Interface Using Charge-Tunable Quantum Dots Strongly Coupled to a Cavity.
    Luo Z; Sun S; Karasahin A; Bracker AS; Carter SG; Yakes MK; Gammon D; Waks E
    Nano Lett; 2019 Oct; 19(10):7072-7077. PubMed ID: 31483668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity-enhanced coherent light scattering from a quantum dot.
    Bennett AJ; Lee JP; Ellis DJ; Meany T; Murray E; Floether FF; Griffths JP; Farrer I; Ritchie DA; Shields AJ
    Sci Adv; 2016 Apr; 2(4):e1501256. PubMed ID: 27152337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled phase shifts with a single quantum dot.
    Fushman I; Englund D; Faraon A; Stoltz N; Petroff P; Vuckovic J
    Science; 2008 May; 320(5877):769-72. PubMed ID: 18467584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.
    Zhong T; Kindem JM; Miyazono E; Faraon A
    Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon Blockade in Weakly Driven Cavity Quantum Electrodynamics Systems with Many Emitters.
    Trivedi R; Radulaski M; Fischer KA; Fan S; Vučković J
    Phys Rev Lett; 2019 Jun; 122(24):243602. PubMed ID: 31322381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity.
    Vora PM; Bracker AS; Carter SG; Sweeney TM; Kim M; Kim CS; Yang L; Brereton PG; Economou SE; Gammon D
    Nat Commun; 2015 Jul; 6():7665. PubMed ID: 26184654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model.
    Tang J
    Opt Express; 2023 Apr; 31(8):12471-12486. PubMed ID: 37157406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Chip Generation, Routing, and Detection of Resonance Fluorescence.
    Reithmaier G; Kaniber M; Flassig F; Lichtmannecker S; Müller K; Andrejew A; Vučković J; Gross R; Finley JJ
    Nano Lett; 2015 Aug; 15(8):5208-13. PubMed ID: 26102603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.