These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 26196812)
21. Field-controlled Luttinger liquid and possible crossover into spin liquid in strong-rail ladder systems. Ding LJ; Yao KL; Fu HH Chemphyschem; 2010 Oct; 11(15):3291-8. PubMed ID: 20839268 [TBL] [Abstract][Full Text] [Related]
22. One-dimensional quantum liquids with power-law interactions: the Luttinger staircase. Dalmonte M; Pupillo G; Zoller P Phys Rev Lett; 2010 Oct; 105(14):140401. PubMed ID: 21230815 [TBL] [Abstract][Full Text] [Related]
23. Correlation of Electron Tunneling and Plasmon Propagation in a Luttinger Liquid. Zhao S; Wang S; Wu F; Shi W; Utama IB; Lyu T; Jiang L; Su Y; Wang S; Watanabe K; Taniguchi T; Zettl A; Zhang X; Zhou C; Wang F Phys Rev Lett; 2018 Jul; 121(4):047702. PubMed ID: 30095956 [TBL] [Abstract][Full Text] [Related]
24. 4He Luttinger liquid in nanopores. Del Maestro A; Boninsegni M; Affleck I Phys Rev Lett; 2011 Mar; 106(10):105303. PubMed ID: 21469800 [TBL] [Abstract][Full Text] [Related]
25. Length dependence of electron transport through molecular wires--a first principles perspective. Khoo KH; Chen Y; Li S; Quek SY Phys Chem Chem Phys; 2015 Jan; 17(1):77-96. PubMed ID: 25407785 [TBL] [Abstract][Full Text] [Related]
26. Enhancement of tunneling density of states at a junction of three Luttinger liquid wires. Agarwal A; Das S; Rao S; Sen D Phys Rev Lett; 2009 Jul; 103(2):026401. PubMed ID: 19659223 [TBL] [Abstract][Full Text] [Related]
27. Charge transport through single molecules, quantum dots and quantum wires. Andergassen S; Meden V; Schoeller H; Splettstoesser J; Wegewijs MR Nanotechnology; 2010 Jul; 21(27):272001. PubMed ID: 20571187 [TBL] [Abstract][Full Text] [Related]
30. Current bistability and hysteresis in strongly correlated quantum wires. Egger R; Grabert H; Koutouza A; Saleur H; Siano F Phys Rev Lett; 2000 Apr; 84(16):3682-5. PubMed ID: 11019176 [TBL] [Abstract][Full Text] [Related]
31. Unveiling the bosonic nature of an ultrashort few-electron pulse. Roussely G; Arrighi E; Georgiou G; Takada S; Schalk M; Urdampilleta M; Ludwig A; Wieck AD; Armagnat P; Kloss T; Waintal X; Meunier T; Bäuerle C Nat Commun; 2018 Jul; 9(1):2811. PubMed ID: 30022067 [TBL] [Abstract][Full Text] [Related]
32. Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid. Lin J; Matveev KA; Pustilnik M Phys Rev Lett; 2013 Jan; 110(1):016401. PubMed ID: 23383812 [TBL] [Abstract][Full Text] [Related]
33. Glassy thermal conductivity in the two-phase Cu(x)Ag(3-x)SbSeTe(2) alloy and high temperature thermoelectric behavior. Drymiotis F; Drye T; Rhodes D; Zhang Q; Lashey JC; Wang Y; Cawthorne S; Ma B; Lindsey S; Tritt T J Phys Condens Matter; 2010 Jan; 22(3):035801. PubMed ID: 21386296 [TBL] [Abstract][Full Text] [Related]
34. Energy partitioning of tunneling currents into Luttinger liquids. Karzig T; Refael G; Glazman LI; von Oppen F Phys Rev Lett; 2011 Oct; 107(17):176403. PubMed ID: 22107546 [TBL] [Abstract][Full Text] [Related]
35. Transport properties in non-Fermi liquid phases of nodal-point semimetals. Mandal I; Freire H J Phys Condens Matter; 2024 Aug; 36(44):. PubMed ID: 39038487 [TBL] [Abstract][Full Text] [Related]
36. Quantum pump for spin and charge transport in a Luttinger liquid. Sharma P; Chamon C Phys Rev Lett; 2001 Aug; 87(9):096401. PubMed ID: 11531585 [TBL] [Abstract][Full Text] [Related]
37. Mode-coupling-induced dissipative and thermal effects at long times after a quantum quench. Mitra A; Giamarchi T Phys Rev Lett; 2011 Oct; 107(15):150602. PubMed ID: 22107279 [TBL] [Abstract][Full Text] [Related]
38. Phonon-induced resistivity of electron liquids in quantum wires. Seelig G; Matveev KA; Andreev AV Phys Rev Lett; 2005 Feb; 94(6):066802. PubMed ID: 15783764 [TBL] [Abstract][Full Text] [Related]
39. Quantum spin liquids and the metal-insulator transition in doped semiconductors. Potter AC; Barkeshli M; McGreevy J; Senthil T Phys Rev Lett; 2012 Aug; 109(7):077205. PubMed ID: 23006401 [TBL] [Abstract][Full Text] [Related]
40. A scaling approach for interacting quantum wires--a possible explanation for the 0.7 anomalous conductance. Schmeltzer D; Kuklov A; Malard M J Phys Condens Matter; 2010 Mar; 22(9):095301. PubMed ID: 21389411 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]