These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26196893)

  • 1. Aqueous, Unfolded OmpA Forms Amyloid-Like Fibrils upon Self-Association.
    Danoff EJ; Fleming KG
    PLoS One; 2015; 10(7):e0132301. PubMed ID: 26196893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The soluble, periplasmic domain of OmpA folds as an independent unit and displays chaperone activity by reducing the self-association propensity of the unfolded OmpA transmembrane β-barrel.
    Danoff EJ; Fleming KG
    Biophys Chem; 2011 Nov; 159(1):194-204. PubMed ID: 21782315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane protein folding on the example of outer membrane protein A of Escherichia coli.
    Kleinschmidt JH
    Cell Mol Life Sci; 2003 Aug; 60(8):1547-58. PubMed ID: 14513830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism.
    Kleinschmidt JH; Tamm LK
    Biochemistry; 1996 Oct; 35(40):12993-3000. PubMed ID: 8855933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K.
    Chen Y; Tang C; Xing Z; Zhang J; Qiu F
    J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lipid bilayer-inserted membrane protein BamA of Escherichia coli facilitates insertion and folding of outer membrane protein A from its complex with Skp.
    Patel GJ; Kleinschmidt JH
    Biochemistry; 2013 Jun; 52(23):3974-86. PubMed ID: 23641708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OmpA can form folded and unfolded oligomers.
    Wang H; Andersen KK; Vad BS; Otzen DE
    Biochim Biophys Acta; 2013 Jan; 1834(1):127-36. PubMed ID: 22982243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding regions of outer membrane protein A in complexes with the periplasmic chaperone Skp. A site-directed fluorescence study.
    Qu J; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Jun; 48(22):4926-36. PubMed ID: 19382746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outer membrane protein A of Escherichia coli inserts and folds into lipid bilayers by a concerted mechanism.
    Kleinschmidt JH; den Blaauwen T; Driessen AJ; Tamm LK
    Biochemistry; 1999 Apr; 38(16):5006-16. PubMed ID: 10213603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concatemers of Outer Membrane Protein A Take Detours in the Folding Landscape.
    Andersen KK; Vad B; Omer S; Otzen DE
    Biochemistry; 2016 Dec; 55(51):7123-7140. PubMed ID: 27973779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers.
    Kleinschmidt JH
    Chem Phys Lipids; 2006 Jun; 141(1-2):30-47. PubMed ID: 16581049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness.
    Kleinschmidt JH; Tamm LK
    J Mol Biol; 2002 Nov; 324(2):319-30. PubMed ID: 12441110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The periplasmic chaperone Skp facilitates targeting, insertion, and folding of OmpA into lipid membranes with a negative membrane surface potential.
    Patel GJ; Behrens-Kneip S; Holst O; Kleinschmidt JH
    Biochemistry; 2009 Nov; 48(43):10235-45. PubMed ID: 19780589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for stepwise formation of amyloid fibrils by the mouse prion protein.
    Jain S; Udgaonkar JB
    J Mol Biol; 2008 Oct; 382(5):1228-41. PubMed ID: 18687339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins.
    Thoma J; Bosshart P; Pfreundschuh M; Müller DJ
    Structure; 2012 Dec; 20(12):2185-90. PubMed ID: 23159125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the outer membrane protein A transmembrane domain.
    Pautsch A; Schulz GE
    Nat Struct Biol; 1998 Nov; 5(11):1013-7. PubMed ID: 9808047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of turn formation and cross-strand interactions in fibrillization of peptides derived from the OspA single-layer beta-sheet.
    Ohnishi S; Koide A; Koide S
    Protein Sci; 2001 Oct; 10(10):2083-92. PubMed ID: 11567099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conversion of non-fibrillar beta-sheet oligomers into amyloid fibrils in Alzheimer's disease amyloid peptide aggregation.
    Benseny-Cases N; Cócera M; Cladera J
    Biochem Biophys Res Commun; 2007 Oct; 361(4):916-21. PubMed ID: 17679138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition.
    Chaudhary AP; Vispute NH; Shukla VK; Ahmad B
    Biochimie; 2017 Jan; 132():75-84. PubMed ID: 27825804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.