These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26196988)

  • 21. Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction.
    Jones PM; May JA; Reitz JB; Solomon EI
    Inorg Chem; 2004 May; 43(11):3349-70. PubMed ID: 15154797
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CO formation reaction pathway in steam methane reforming by rhodium.
    van Grootel PW; Hensen EJ; van Santen RA
    Langmuir; 2010 Nov; 26(21):16339-48. PubMed ID: 20919687
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A first principle study for the adsorption and absorption of carbon atom and the CO dissociation on Ir(100) surface.
    Erikat IA; Hamad BA
    J Chem Phys; 2013 Nov; 139(17):174703. PubMed ID: 24206318
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 1,2-Dibromoethane on Cu(100): bonding structure and transformation to C2H4.
    Lin JL; Lin YS; Shih JJ; Kuo KH; Lin SK; Wu TS; Shiu MY
    J Chem Phys; 2011 Aug; 135(6):064706. PubMed ID: 21842948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic Intermediates of CO
    Ren Y; Yuan K; Zhou X; Sun H; Wu K; Bernasek SL; Chen W; Xu GQ
    Chemistry; 2018 Oct; 24(60):16097-16103. PubMed ID: 30088685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First principles study of adsorption and dissociation of CO on W(111).
    Chen L; Sholl DS; Johnson JK
    J Phys Chem B; 2006 Jan; 110(3):1344-9. PubMed ID: 16471684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coadsorption of CO and NO on the Cu(2)O(111) surface: A periodic density functional theory study.
    Sun BZ; Chen WK; Xu YJ
    J Chem Phys; 2009 Nov; 131(17):174503. PubMed ID: 19895021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reaction mechanism of CO oxidation on Cu(2)O(111): A density functional study.
    Sun BZ; Chen WK; Xu YJ
    J Chem Phys; 2010 Oct; 133(15):154502. PubMed ID: 20969398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of aggregation, defects, and contaminant oxygen on water dissociation at Cu(110) surface: a theoretical study.
    Tang QL; Chen ZX
    J Chem Phys; 2007 Sep; 127(10):104707. PubMed ID: 17867769
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing adsorption sites for CO on ceria.
    Mudiyanselage K; Kim HY; Senanayake SD; Baber AE; Liu P; Stacchiola D
    Phys Chem Chem Phys; 2013 Oct; 15(38):15856-62. PubMed ID: 23942870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. First-principle calculations on CO oxidation catalyzed by a gold nanoparticle.
    Chen HT; Chang JG; Ju SP; Chen HL
    J Comput Chem; 2010 Jan; 31(2):258-65. PubMed ID: 19434739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NO dissociation on Cu(111) and Cu2O(111) surfaces: a density functional theory based study.
    Padama AA; Kishi H; Arevalo RL; Moreno JL; Kasai H; Taniguchi M; Uenishi M; Tanaka H; Nishihata Y
    J Phys Condens Matter; 2012 May; 24(17):175005. PubMed ID: 22481123
    [TBL] [Abstract][Full Text] [Related]  

  • 35. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced low-temperature CO oxidation on a stepped platinum surface for oxygen pressures above 10(-5) Torr.
    Lewis HD; Burnett DJ; Gabelnick AM; Fischer DA; Gland JL
    J Phys Chem B; 2005 Nov; 109(46):21847-57. PubMed ID: 16853838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Copper and arsenate co-sorption at the mineral-water interfaces of goethite and jarosite.
    Gräfe M; Beattie DA; Smith E; Skinner WM; Singh B
    J Colloid Interface Sci; 2008 Jun; 322(2):399-413. PubMed ID: 18423478
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphdiyne as a metal-free catalyst for low-temperature CO oxidation.
    Wu P; Du P; Zhang H; Cai C
    Phys Chem Chem Phys; 2014 Mar; 16(12):5640-8. PubMed ID: 24519135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adsorption of CO2 and coadsorption of H and CO2 on potassium-promoted Cu(115).
    Onsgaard J; Hoffmann SV; Møller P; Godowski PJ; Wagner JB; Paolucci G; Baraldi A; Comelli G; Groso A
    Chemphyschem; 2003 Apr; 4(5):466-73. PubMed ID: 12785260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy.
    Jiang P; Prendergast D; Borondics F; Porsgaard S; Giovanetti L; Pach E; Newberg J; Bluhm H; Besenbacher F; Salmeron M
    J Chem Phys; 2013 Jan; 138(2):024704. PubMed ID: 23320710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.