These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 26197038)

  • 1. Fluorescence Turn-on Enantioselective Recognition of both Chiral Acidic Compounds and α-Amino Acids by a Chiral Tetraphenylethylene Macrocycle Amine.
    Feng HT; Zhang X; Zheng YS
    J Org Chem; 2015 Aug; 80(16):8096-101. PubMed ID: 26197038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monomer emission and aggregate emission of an imidazolium macrocycle based on bridged tetraphenylethylene and their quenching by C60.
    Wang JH; Feng HT; Luo J; Zheng YS
    J Org Chem; 2014 Jun; 79(12):5746-51. PubMed ID: 24870018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantiomeric recognition of amino acid salts by macrocyclic crown ethers derived from enantiomerically pure 1,8,9,16-tetrahydroxytetraphenylenes.
    Cheng C; Cai Z; Peng XS; Wong HN
    J Org Chem; 2013 Sep; 78(17):8562-73. PubMed ID: 23927033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Recognition for Many Different Kinds of Chiral Guests by One Chiral Receptor Based on Tetraphenylethylene Cyclohexylbisurea.
    Xiong JB; Xie WZ; Sun JP; Wang JH; Zhu ZH; Feng HT; Guo D; Zhang H; Zheng YS
    J Org Chem; 2016 May; 81(9):3720-6. PubMed ID: 27032054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective cooperativity between intra-receptor interactions and guest binding: quantification of reinforced chiral recognition.
    Carrillo R; Feher-Voelger A; Martín T
    Angew Chem Int Ed Engl; 2011 Nov; 50(45):10616-20. PubMed ID: 21932276
    [No Abstract]   [Full Text] [Related]  

  • 6. Enantiomer analysis of chiral carboxylic acids by AIE molecules bearing optically pure aminol groups.
    Zheng YS; Hu YJ; Li DM; Chen YC
    Talanta; 2010 Jan; 80(3):1470-4. PubMed ID: 20006116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the molecular recognition of amino acid derivatives by a pseudopeptidic macrocycle: ESI-MS, NMR, fluorescence, and modeling studies.
    Alfonso I; Burguete MI; Galindo F; Luis SV; Vigara L
    J Org Chem; 2009 Aug; 74(16):6130-42. PubMed ID: 19606887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6,7-Bismethoxy-2,11-dihydroxytetraphenylene Derived Macrocycles: Synthesis, Structures, and Complexation with Fullerenes.
    Deng CL; Xiong XD; Chik DT; Cai Z; Peng XS; Wong HN
    Chem Asian J; 2015 Nov; 10(11):2342-6. PubMed ID: 26211744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced-fit in the gas phase: conformational effects on the enantioselectivity of chiral tetra-amide macrocycles.
    Gasparrini F; Pierini M; Villani C; Filippi A; Speranza M
    J Am Chem Soc; 2008 Jan; 130(2):522-34. PubMed ID: 18095678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulation of the aggregation and deaggregation of tetraphenylethylene and silole fluorophores by amphiphiles: emission modulation and sensing applications.
    Zhang G; Hu F; Zhang D
    Langmuir; 2015 Apr; 31(16):4593-604. PubMed ID: 25331184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives.
    Wong WL; Huang KH; Teng PF; Lee CS; Kwong HL
    Chem Commun (Camb); 2004 Feb; (4):384-5. PubMed ID: 14765220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resorcinarene-based cavitands with chiral amino acid substituents for chiral amine recognition.
    Li N; Yang F; Stock HA; Dearden DV; Lamb JD; Harrison RG
    Org Biomol Chem; 2012 Sep; 10(36):7392-401. PubMed ID: 22865201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of Enantiorecognition and Resolution by Chiral AIEgens.
    Wang X; Xiang S; Qi C; Chen M; Su X; Yang JC; Tian J; Feng HT; Tang BZ
    ACS Nano; 2022 May; 16(5):8223-8232. PubMed ID: 35544599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the residual silanol group protection on the liquid chromatographic resolution of racemic primary amino compounds on a chiral stationary phase based on optically active (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6.
    Hyun MH; Han SC; Choi HJ; Kang BS; Ha HJ
    J Chromatogr A; 2007 Jan; 1138(1-2):169-74. PubMed ID: 17084849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expansion of a 2 + 2 macrocycle into a 6 + 6 macrocycle: template effect of cadmium(II).
    Gregoliński J; Ślepokura K; Paćkowski T; Lisowski J
    Org Lett; 2014 Sep; 16(17):4372-5. PubMed ID: 25142027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dinitriles bearing AIE-active moieties: synthesis, E/Z isomerization, and fluorescence properties.
    Tasso TT; Furuyama T; Kobayashi N
    Chemistry; 2015 Mar; 21(12):4817-24. PubMed ID: 25676348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxytetraphenylenes, a new type of self-assembling building block and chiral catalyst.
    Huang H; Hau CK; Law CC; Wong HN
    Org Biomol Chem; 2009 Apr; 7(7):1249-57. PubMed ID: 19300805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid.
    Akiyama T; Itoh J; Yokota K; Fuchibe K
    Angew Chem Int Ed Engl; 2004 Mar; 43(12):1566-8. PubMed ID: 15022235
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.